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Abstract. Home care, known also as domiciliary care, is part of the community care service that is a responsibil-
ity of the local government authorities in the UK as well as many other countries around the world. The aim is to 
provide the care and support needed to assist people, particularly older people, people with physical or learning 
disabilities and people who need assistance due to illness to live as independently as possible in their own homes. 
It is performed primarily by care workers visiting clients’ homes where they provide help with daily activities. 
This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized 
routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance trav-
eled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic 
called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-
dimensional point in space which represents the corresponding schedule for care workers and their clients. Each 
dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous 
position value of each dimension determines the care worker to be assigned and also the assignment priority. A 
heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job 
schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Pri-
ority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution 
which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are 
embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodol-
ogy is implemented, tested, and compared with existing solutions for some ‘real’ problem instances. 

 
Keywords: Care Worker Scheduling, Meta-heuristic, Particle Swarm Optimization, Local Improvement Procedures, 

Heuristics, Home Care 
 
 

1.  INTRODUCTION 

Home care (sometimes called domiciliary care) is 
part of the community care service that is the responsibil-
ity of local government authorities in the UK. Its aim is to 
provide the care and support needed to assist people, par-

ticularly older people, people with physical or learning 
disabilities and people who need assistance due to illness 
to live as independently as possible in their own homes. 
Home care is a viable alternative to in-hospital, residential 
or institutional based nursing care and the underlying 
driver is that it leads to a higher quality of life for the cli-
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ents as well as lower costs for the client and the state. 
Care workers visit clients in their own homes and help 
them with not only the simpler daily tasks such as getting 
up, dressing, toileting, personal hygiene, provision of 
meals, housework, shopping, contact and befriending but 
also tasks such as medication and physical therapy that 
require higher levels of skills. 

Until recently, homecare in the UK has been per-
formed predominantly by care workers employed by the 
social services departments of local government authori-
ties i.e., in-house. However, local authorities are increas-
ingly outsourcing homecare from the independent sector, 
with some outsourcing as much as 100%. This is being 
driven in the first instance by central government seeking 
to achieve best value where value can be seen as the ratio 
of quality to cost. 

Care workers travel from their own homes to deliver 
care to their allocated clients at a specified time or within 
a specified time window, and they return home after fin-
ishing their visits. The scope of this article deals with the 
dispatching of care workers to clients in an efficient man-
ner under time and capacity constraints. Optimization 
techniques are developed to schedule the care workers on 
a daily basis to minimize the distance traveled.  

The benefits of efficient scheduling of care workers 
are: 

i: Reduce the traveling distance and hence traveling 
costs of the care workers. 

ii: Improve worker utilization by reducing the 
‘waste’ of travel and consequently reduce the 
number of workers required. 

iii: Improve working conditions for care workers by 
improving the shift pattern.  

iv: Increase customer service by satisfying all ser-
vice requirements within specified time windows. 

v: Combined with automation through computerisa-
tion, a scheduler would free-up care managers to 
undertake a more regulatory role and to focus on 
more strategic issues. 

 
The care worker scheduling problem can be modeled 

by the vehicle routing problem with time windows 
(VRPTW) with limited route time, even though some 
specific characteristics are different. In general, the vehi-
cle routing problem involves finding efficient routes for 
vehicles within a network to minimize or maximize a pre-
specified objective function. VRPTW is a combinatorial 
optimization problem involving extremely large search 
spaces with correspondingly large numbers of potential 
solutions. The complexity class of the problem is NP-
hard (non-polynomial time) in which finding optimal 
solutions is difficult. A collaborative population-based 
meta-heuristic called Particle Swarm Optimization (PSO) 
is proposed and specifically designed to solve the prob-
lem. An initial solution heuristic and local search tech-
niques are embedded in the PSO algorithm in order to 
achieve better solution quality. 

To the authors’ knowledge, this is the first time that 

PSO has been applied to care worker scheduling. Never-
theless, some heuristic techniques are known to apply to 
similar types of problems. 

The remaining sections of this article are organized 
as follows: The next section intends to give some back-
ground to PSO and VRPTW as well as a review of the 
application of PSO and previous solution techniques for 
related problems. Section 3 explains descriptions of the 
problem including the objective function and constraints. 
Section 4 illustrates the methodological approach of ap-
plication of PSO to care worker scheduling, followed by 
the computational experiments in Section 5. Finally, the 
conclusions and a direction for future research are pre-
sented. 

2.  LITERATURE REVIEW 

2.1 Application of PSO to Scheduling 

The Particle Swarm Optimization (PSO) algorithm is 
an evolutionary computational algorithm originally de-
veloped by Eberhart and Kennedy (1995) and Kennedy 
and Eberhart (1995). It is a population-based searching 
technique that simulates the social behavior of birds 
flocking or fish schooling, etc. Each individual, called a 
particle represents a point in the search space. The popu-
lation, called a swarm, represents the set of points that are 
potential solutions. PSO is based on the interaction and 
the social communication of the group of particles. The 
particle iteratively flies through the search space by using 
the velocity function, which is constantly updated based 
on its own previous experience and the group’s experi-
ence. Each particle tends to adjust the position toward its 
own previous best position and to the group’s previous 
best position. Tracking and memorizing the best positions 
encountered builds the particle’s experience. PSO pos-
sesses a memory i.e. every particle remembers the best 
position it has reached. PSO combines local search 
(through self experience) with global search (through 
neighboring experience), attempting to balance explora-
tion and exploitation. 

PSO has been applied successfully to various types 
of scheduling problem. Tasgetiren et al. (2004) were the 
first to report the application of PSO to scheduling. They 
used PSO to solve the single machine total weighted tar-
diness problem. A heuristic called the smallest position 
value (SPV) rule was developed to enable PSO to be ap-
plied to scheduling. A local search procedure, called vari-
able neighborhood search (VNS) further improved the 
performance of PSO. The proposed algorithm was tested 
against ant colony optimization (ACO) and iterative local 
search (ILS) to give the best results reported in the litera-
ture. The results have shown that three approaches are 
able to find the optimal and best known solutions for all 
problem instances in reasonable CPU time. They con-
cluded that PSO is as good as ACO and ILS. The use of 
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VNS significantly improves the solution quality for large 
problems. 

Tasgetiren et al. (2006) applied PSO to permutation 
flowshop sequencing also. The objective was to minimize 
makespan and total flowtime. They used the same heuris-
tics as before, i.e. SPV and VNS. The algorithm was 
evaluated against benchmark. For the total flow time cri-
terion, a total of 57 out of 90 best known solutions were 
improved while for makespan, a total of 195 out of 800 
best known solutions were improved.  

The application of PSO to the assembly flowshop 
scheduling problem has been addressed by Allahverdi and 
Al-Anzi (2006). The objective of the study is to compare 
the performance of PSO with tabu search and the EST 
heuristic. The computational analysis indicates that tabu 
search outperforms the others for the case when the due 
dates range is relatively wide. It also indicates that the 
PSO significantly outperforms the others for difficult 
problems, i.e., tight due-dates. For the difficult problems, 
the inclusion of a dominance relation helps reduce the 
error by 65%. 

Xia and Wu (2005) presented a hybrid PSO ap-
proach for the multi-objective flexible job-shop schedul-
ing problem. The hybridizing of PSO and Simulated An-
nealing algorithm is implemented. The results obtained 
from the computational study have shown that the pro-
posed algorithm is a viable and effective approach for this 
type of problem, especially for large problem size. 

Jerald et al. (2005) compared 4 approaches, i.e. a 
genetic algorithm (GA), simulated annealing, a memetic 
algorithm and PSO for scheduling a flexible manufactur-
ing system with multiple objective functions. They found 
PSO to be superior.  

Zhang et al. (2006) applied PSO to resource-
constrained project scheduling. The objective is to mini-
mize total project duration. The performance of PSO is 
compared with the three heuristics (minimum total float, 
shortest activity duration, and minimum late finish time) 
and a GA. The computation results indicated that PSO 
can obtain better results than the heuristic methods whilst 
achieving the same results as the GA, although PSO re-
quired fewer search iterations. 

PSO has many desirable characteristics. It is very 
simple and can be adapted to many areas of application. It 
is versatile, robust and general purpose since it can be 
adapted quite simply with minor modification. Unlike a 
GA it involves only a few parameters so that it is easier to 
find the best combination of parameter values. Further-
more, it is computationally efficient and as a population-
based heuristic it is amenable to parallel implementation.  

The successful application of PSO to scheduling and 
its favourable characteristics indicate that PSO is poten-
tially suitable for care worker scheduling.  

2.2 Previous Solutions for VRPTW 

VRPTW involves the determination of an efficient 
set of routes, all starting and ending at a central depot, for 

a fleet of vehicles intended to service a given set of cus-
tomers. All customers may be visited only once by only 
one vehicle. Each customer must be serviced within a 
specified time interval or window. The lower and upper 
bounds of the time window define the earliest and latest 
time for beginning the service for the customer. Therefore, 
a vehicle is not allowed to begin service after the time 
window’s upper bound. A waiting time is incurred if a 
vehicle reaches the customer before the time window’s 
lower bound. Each customer has a specified service time. 
The total route time of a vehicle is the sum of its travel 
times (which are proportional to the distances traveled), 
waiting or idle times and the service times. The maximum 
route time should not exceed the maximum route time of 
each vehicle. The objective of VRPTW is to minimize the 
route length, the service cost, the travel time, the number 
of vehicles or a combination of these depending upon the 
particular application. 

The current VRPTW solution techniques can be 
categorized as exact algorithms, construction and im-
provement heuristics or meta-heuristics. An intensive 
survey of previous articles on VRPTW can be found in 
Desrochers et al. (1988) and Solomon and Desrosiers 
(1988). Recently, Bräysy et al. (2004) provided compre-
hensive surveys and compared previous VRPTW applica-
tions based on evolutionary algorithms. 

‘Exact’ algorithms for VRPTW have been investi-
gated by many researchers. Kolen et al. (1987) introduced 
the branch and bound method. Desrochers et al. (1992) 
used the column generation method to solve linear pro-
gramming relaxation of the set partitioning formulation of 
the VRPTW. Fisher et al. (1997) presented an optimiza-
tion algorithm based on K-tree relaxation and Lagrangian 
deposition methods.  

Due to the massive computational requirement of 
exact algorithms, constructive heuristics have been intro-
duced to ‘build’ the vehicle route. Solomon (1987) was 
the first author to introduce a variety of route construction 
heuristics. His results show that a sequential time-space 
based insertion algorithm outperforms other techniques. 
While Potvin and Rousseau (1993) reported that the use 
of parallel construction philosophy can substantially im-
prove Solomon’s results. Solomon’s test problems have 
been used by several researchers as a standard benchmark 
problem for VRPTW. For the improvement heuristics, the 
algorithm based on edge exchange is suggested by Lin 
and Kernighan (1973). Potvin and Rousseau (1995) pro-
posed a new 2-opt exchange heuristic. Savelsberg (1990) 
introduced the local search technique based on the k-
exchange concept. 

Meta-heuristics have been applied by many re-
searchers. The search schemes of meta-heuristics are 
mainly based on simulating nature and on artificial intel-
ligence. The strategies explore the search space more 
thoroughly in order to avoid local optima. Meta-heuristics 
include GAs (Potvin and Bengio, 1996), simulated an-
nealing (Chiang and Rusell, 1996), tabu search (Potvin et 
al., 1996), (Taillard et al., 1997) and parallel tabu search 
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(Garcia et al., 1994). Some authors reported the hybridi-
zation of meta-heuristics. Thaniah et al. (1994) introduced 
GenSAT which is the hybrid combination of GAs, simu-
lated annealing, tabu search and local search techniques. 
The Route-Neighborhood-Based Two-Stage metaheuristic 
(RNETS) was proposed by (Hwa et al., 1999). The con-
cepts of nested parallel route construction and end han-
dling are introduced. Gambardella et al. (1999) applied a 
multiple ant colony system in which the first colony 
minimizes the number of vehicles while the second col-
ony minimizes the distance traveled. Tan et al. (2001) also 
developed and enhanced various meta-heuristics includ-
ing simulated annealing (with updated cooling scheme), a 
variant of tabu search (‘strict’ tabu) and a GA (with new 
crossover operations, hybrid hill-climbing and adaptive 
mutation). Homberger and Gehring (2005) presented a 
hybridization of two-phase meta-heuristics which com-
bines (μ, λ) evolution strategy and tabu search heuristics. 

The number of possible solutions for VRPTW grows 
exponentially with the problem size. Since the complexity 
of VRPTW is NP-hard, the improved PSO algorithm is 
proposed to efficiently solve the problem. 

2.3 Existing Techniques for Care Worker Sched-
uling Problem 

The care worker scheduling problem was first con-
sidered by The Welsh Systems Consortium; a partnership 
between seven local government authorities in Wales. The 
traditional method, i.e. manual calculation, is used to ob-
tain the solution. Later on the Advanced Internet & 
Emerging Systems Institute (http://www.aimes.net) at the 
University of Liverpool attempted to develop the care 
worker scheduling engine in order to improve the existing 
solutions obtained by the Welsh Systems Consortium. 
AiMES applied the proprietary software ILOG™ Dis-
patcher 4.0 (http://www.ilog.com) and utilized its embed-
ding features to develop the scheduling engine. ILOG™ 
provides a variety of pre-defined first solution heuristics 
for use in generating an initial solution and also offers a 
variety of pre-defined neighborhoods for use in improv-
ing a solution. The savings heuristic is used to construct 
the initial feasible route. The principle is the trade off 
between using more vehicles with shorter routes and 
fewer vehicles with longer routes. The initial route is fur-
ther improved by using pre-defined neighborhoods to 
reduce the costs of the route, these are 2-opt, Or-opt, Re-
locate, Cross, Exchange. The real care service data is 
used as a benchmark problems. The results obtained by 
AiMES outperform those obtained by the Welsh Systems 
Consortium in every case of the test problem instances. It 
produces the considerably saving in distance traveled.  

3.  PROBLEM DESCRIPTION 

The aim is to schedule care workers on a daily basis, 
minimising the total distance traveled whilst satisfying all 

constraints. The problem is defined as follows: 
i:  Care workers are scheduled according to the re-

quirements of the clients, who may require 
more than one activity/visit per day.  

ii:  Demand has substantial peaks during some pe-
riods of the day i.e. morning and early evening.  

iii:  Each activity must be delivered within a speci-
fied time window and location. 

iv:  Each activity can involve only one visit by one 
care worker i.e. no activity splitting is allowed. 

v:  Care workers start from their homes and return 
after finishing all assigned activities. The total 
traveling distance is the sum of the distance 
from care worker’s home to the first client, the 
distances between the successive clients and the 
distance from the last client back to the worker’s 
home.  

vi:  For critical, medical activities the time window 
is a target time ± 5 minutes. For non-critical ac-
tivities the window is ± 15 minutes. 

vii: The maximum capacity of each worker is 7.5 
hours per day, including travel time. 

viii: In the model used here, each worker is assumed 
to be available 24 hours per day, but can be used 
for only 7.5 hours in that period. 

ix:  The travel speed of a care worker is assumed to 
be 30 miles/hour and ignores traffic conditions. 

x:  Locations are represented by easting/northing 
coordinates for each postcode. The Euclidean or 
straight-line distance is assumed between loca-
tions. 

xi:  Some issues have been neglected in this first 
study, such as client-carer familiarity, skill-
matching requirements, care plan shift patterns 
and male/female preference for care workers. 

 
As mentioned earlier, care worker scheduling is a 

version of VRPTW but with some characteristics of its 
own. To be more specific, the problem can be seen as a 
special case of the Multi Depot Vehicle Routing Problem 
with Time Windows (MDVRPTW) in which each vehicle 
(a care worker) stationed at each corresponding depot 
(care worker’s home). In particular, care worker schedul-
ing is different to VRPTW in that all care workers (vehi-
cles) start and finish at their own, separate homes, 
whereas for general VRPTW all vehicles start and end at 
the same central depot. For a discussion and a solution 
procedure of MDVRPTW, refer to Polacek et al. (2004).  

4.  METHODOLOGY 

4.1 Particle Swarm Optimization (PSO) 

PSO is a collaborative population-based search that 
models the social behaviour of particles. PSO is initial-
ized with a group of random particles (solutions) and ve-
locities in n-dimensional space. The performance of each 
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particle is evaluated using a pre-defined fitness function, 
which depends on the problem to be solved. At every 
iteration, the position giving the best fitness value of 
every particle is recorded as the previous best. The best 
value obtained so far by the whole swarm is memorized 
as the global best. PSO searches for optima by updating 
generations. The particle flies toward a new position by 
calculating a rate of position change or velocity. The his-
torical information is used to calculate the velocity and 
the particle updates the position according to the follow-
ing equations. 

 
 
vt+1

i = χ [ w×vt
i + c1×r1×(pbesti – xt

i)  
       +  c2×r2×(pbestgbest – xt

i) ]            (1) 
xt+1

i = xt
i+ vt+1

i                             (2) 
 
For the velocity equation (Eq. 1), the inertia weight 

(w) is employed to control the impact of the previous his-
tory of velocity on the current velocity. The inertia weight 
is used to provide a balance between the exploration and 
exploitation ability of the swarm. Shi and Eberhart (1998) 
suggest that the inertia weight should be set initially to a 
large value to facilitate global exploration, and gradually 
decreased in order to fine-tune the search area. The w is 
usually decreased from 0.9 to 0.4 during a run. The vari-
ables r1 and r2 are random real numbers from the uniform 
distribution U(0,1). The acceleration constants c1 and c2 
represent the weights of the stochastic acceleration terms 
that pull each particle toward pbest and gbest positions. A 
high value allows particles to make a rapid movement 
toward pbest and gbest positions while a low value allows 
particles to move far from the target region before coming 
back. For almost all applications, c1 and c2 are normally 
set to 2. An intensive review and suggestions about the 
parameter values for PSO can be found in Eberhart and 
Shi (2001). The application of a constriction factor (χ) is 
suggested by Clerc (1999), to multiply with the whole 
terms in order to insure the convergence of PSO. The 
constriction factor is usually set equal to 0.729. Moreover, 
the travel distance of a particle is controlled by restricting 
the maximum velocity, vmax, in order to control the maxi-
mum global exploration of PSO. After the particles have 
moved into new positions, the performance of each parti-
cle is evaluated according to the pre-defined objective 
function. These procedures are repeated until the maxi-
mum number of iterations is reached.  

4.2 Earliest Start Time Priority with Minimum Dis-
tance Assignment (ESTPMDA) 

An initial solution for the problem is determined by 
using ESTPMDA heuristics. Let m and n be the number 
of care workers and care activities, respectively. In the 
first stage, m care workers are sorted so that the route 
connecting the care workers’ homes has the shortest dis-
tance. The purpose of sorting the care workers is to guide 

the search of the particles. Then n care activities are ar-
ranged according to the earliest start time (EST) rule, 
which is in ascending order of their ideal start time. The 
priority value of assignment is represented by an (m x n) 
matrix. The header of columns represents the EST activity 
list and the header of rows represents the care worker ID 
(after sorting). In the second stage, the procedure tries to 
insert activity, individually into all care worker routes and 
calculates the cost of insertion (additional distance) of 
each route. The cost of insertion is then translated to pri-
ority value, where the lower the cost of insertion means 
the higher the priority value. An example priority-matrix 
is shown in Table 1.  

From Table 1, suppose there are 6 activities and 3 
care workers. The activity will be assigned to the highest 
possible priority value route providing that the time win-
dows and capacity constraints are not violated. From the 
matrix, activity 3 (J3) has the highest priority to assign to 
care worker 2. Similarly, activity 5 prefers to assign to 
care worker 3. If the infeasibility assignment occurred, 
activity will be assigned to the next highest priority care 
worker. Once the assignment is accomplished for each 
activity, the priority value is revised according to the real 
assignment and is kept in the matrix table for future refer-
ence. The procedure will repeat until all activities are as-
signed to care worker routes. It should be noted that the 
calculation of the priority matrix, assignment step, and the 
feasibility checking is done on a one-by-one basis.  

 
Table 1. Priority matrix for each particle. 

EST

Priority 
J3 J5 J4 J1 J2 J6 

1st  C2 C3 C2 C1 C1 C3

2nd  C1 C2 C1 C3 C2 C1

3rd  C3 C1 C3 C2 C3 C2

 
The above heuristic can be used to obtain one feasi-

ble solution. Since PSO is a population-based search 
technique, variants of feasible solutions must be obtained 
for each of the particles in the population. To do so, pair-
wise interchange (PI) is applied to the EST activity list. 
The parameter pchange (the percentage of selecting ac-
tivities to do PI) controls the number of times PI is per-
formed. It controls the amount of disturbance of the origi-
nal EST sequence, which is set equal to 2% of the number 
of activities. The disturbance in EST sequence will result 
in a different assignment sequence. When the assignment 
sequence is changed, the order of activity to be assigned 
to care worker will change. The care worker route will be 
occupied differently by activities. Applying the same 
ESTPMDA procedure to this new activity sequence, a 
different initial feasible solution is obtained for each par-
ticle.  
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4.3 Application of PSO to care worker scheduling  

In order to apply PSO to care worker scheduling, 
each particle represents a multi-dimensional point in 
space. The main variables in PSO can be summarized as 
follows: xt

ijk denotes the position value of dimension ith 
and jth of particle kth in the swarm at iteration t. The ith 
dimension (i = 1, 2, ⋯,n) refers to the EST list of activi-
ties, where n is the total number of the activities. The jth 
dimension (j = 1, 2, ⋯, m) represents the care worker ID, 
where m is the total number of care workers. For each 
particle at iteration t, xt

k = [xt
11k, xt

12k, xt
13k, ⋯, xt

n1k, xt
n2k, 

⋯, xt
nmk]. The position value represents the priority value 

of the care worker to be assigned by the activity. The 
whole swarm is the set of all particles, xt = [xt

1, xt
2, xt

3, ⋯, 
xt

k], whereas k is the population size. The particle moves 
through the search space by using its associated velocity 
value, vt

ijk. The vt
ijk refers to velocity of dimension ith and 

jth of particle k th at iteration t. The previous best position, 
pbesttijk, is the position value of the k th particle with the 
minimum objective function so far at iteration t. The 
minimum objective value is recorded as pbest tk. The best 
value obtained by the whole swarm is tracked and memo-
rized as global best, gbest t, where gbest t represents the 
index of the best particle.  

The PSO algorithm and its Pseudo code for care 
worker scheduling are presented below. 

 
Pseudo code: Improved PSO algorithm  
 
Start 
Apply Initial Solution Heuristic: ESTPMDA(see s

ection 4.2) 
Initialize PSO parameters: Random x0

ijk and trans
late to x0

k matrix according to ESTPMDA heur
istic, popsize, maxiter, χ, w0, c1, c2, vmax, v0

k, 
pbest0k, gbest0 for all k 

Initialize LIP parameters: Nselect, numinsert, pro
baccept  

Do { 
  For{ k = 1 to popsize              

Solution representation: using Heuristic assi-
gnment (see step2 of section 4.3.1); and Repair

Fitness value evaluation: calculate f(Assign
(xt

k))  
Apply Local Improvement Procedures:  

a.  Swap Procedure (see section 4.4.1); 
and Repair  

b.  Insertion Procedure (see section 4.4.
2); and Repair  

Update objective value after LIP 
Update pbest and gbest 
Calculate velocity: using Eq. 5 
Update position value: using Eq. 6 
Update inertia weight: using Eq. 7 

}End for 
} while (termination)  
End 

4.3.1 PSO Algorithm 

Step 1. Initialization 
The population of particles is initialized randomly. 

The number of particles is equal to the parameter popsize, 
which is 10. A preliminary experiment was conducted to 
test the population sizes of 10 and 20 and found that the 
size of 10 is adequate. The continuous position values of 
each dimension of each particle are generated by using 
the following formula: 

 
)1,0()( minmaxmin

0 Uxxxx ijk ×−+=        (3) 
 
where, xmin and xmax are the pre-defined range of po-

sition values, which are set to 0 and n, respectively. Note 
that n is the number of care activities. U(0,1) is a uniform 
random number in the range 0 to 1. The previous best 
position of each particle pbest0ijk is initially set equal to 
x0

ijk. Similarly, their associated random velocities can be 
generated according to the following formula. 

 
)1,0()( minmaxmin

0 Uvvvv ijk ×−+=       (4) 
 
where, vmin and vmax are the pre-defined range of the 

velocity values, which are set to –n/2 and n/2, respectively.  
Note that based on some experiments not presented 

in this paper, the values of xmin, xmax, vmin, and vmax do not 

Table 2. Translation of the initial solution to PSO posi-
tion value matrix. 

Random position value for each particle  

EST

Random  

value 

J3 J5 J4 J1 J2 J6

1 1.2 4.2 5.2 2.8 1.4 1.3

2 2.5 2.1 1.5 4.2 0.2 5.1

3 3.9 3.4 0.5 3.6 3.7 2.4

Priority matrix for each particle 

EST

Priority 
J3 J5 J4 J1 J2 J6

1st  C2 C3 C2 C1 C1 C3

2nd  C1 C2 C1 C3 C2 C1

3rd   C3 C1 C3 C2 C3 C2

New position value matrix for each particle (x0
k) 

EST

Carer ID 
J3 J5 J4 J1 J2 J6

C1 2.5 4.2 1.5 2.8 0.2 2.4

C2 1.2 3.4 0.5 4.2 1.4 5.1

C3 3.9 2.1 5.2 3.6 3.7 1.3
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significantly affect the performance of the algorithm.  
 

Translation of initial solution to PSO position value matrix. 
 
The initial feasible solution obtained by the ESTPMDA 

heuristic is converted to the continuous position values. 
The random position values obtained from (Eq.3) are 
ranked in ascending order. The lower value refers to the 
higher priority. Recall the priority matrix from Table 1. 
Then, create a new position value matrix (x0

k) by mapping 
the position value according to the priority matrix, i.e. 
lowest value assigned to the highest priority. As a result, 
the initial position values that comply with the priority 
value matrix of all particles are obtained. An example of 
the translation procedure is shown in Table 2.  

 
Step 2. Heuristic Assignment Scheme  

(Solution Representation) 
The heuristic assignment scheme is designed espe-

cially to translate the continuous position value into the 
discrete schedule. Each dimension of a particle represents 
a corresponding care activity and care worker ID. The 
position value implies the assignment priority of the ac-
tivity to the care worker. In order to generate the schedule, 
the position values of each particle are sorted into ascend-
ing order to create the priority matrix. For example, in 
column J3 of Table 3, the position value 2.1 is the lowest 
followed by 3.4 and 4.2. This implies that activity J3 is 
preferable to care worker 2 (C2) as the first priority fol-
lowed by care worker 1 (C1) and care worker 3 (C3) as 
the second and third priority, respectively. Repeat the 
same procedure for all care activities, the priority matrix 
will be created. 

Then, the assignment of care activities to care 
worker route is performed. The assignment of care activ-
ity to care worker is performed on a one-by-one basis 
simultaneously with the feasibility checking. In order to 
do so, care activity is assigned to the care worker that has 
the highest priority provided that the time windows and 
capacity constraints are not violated. During assignment, 
the current activity and previously assigned activities are 
allowed to move themselves within time windows in or-
der to make the schedule feasible. If infeasibility occurs, 
the candidate activity is assigned to the care worker with 
the next highest assignment priority. After all activities 
have been assigned, the position value matrix is revised to 
be compatible with the new assignment.  

Table 3 illustrates the solution representation tech-
nique. For the Table, J3 and J5 are assigned to C2 and C1, 
respectively. J4 is preferable to assign to C2. After per-
forming the feasibility checking, suppose infeasibility oc-
curs due to time conflict with previously assigned job (J3). 
J4 has to be assigned to the next highest priority, which is 
C3. Then, the position value matrix of C2 and C3 has to 
be revised according to the real assignment as highlighted 
in Table 3. The procedure will be repeated until all care 
activities are assigned. 

Step 3. Fitness value evaluation  
After the assignment of care activities to all care 

workers is accomplished, the fitness of each particle is 
evaluated. Let Assign(xt

k) be the corresponding sequence 
at iteration t of particle xt

k. The objective function value 
f(Assign(xt

k)) is calculated. The objective function is the 
sum of all distances traveled. 

 
Table 3. Solution representation. 

Position value matrix for each particle at  

iteration t (xt
k) 

EST

Carer ID 
J3 J5 J4 J1 J2 J6

C1 3.4 0.5 5.4 3.5 2.3 2.3

C2 2.1 3.5 1.6 4.3 3.6 1.2

C3 4.2 2.3 3.2 1.2 3.4 4.5

Assignment priority matrix 

EST

Priority 
J3 J5 J4 J1 J2 J6

1st  C2 C1 C2 C3 C1 C2

2nd  C1 C3 C3 C1 C3 C1

3rd  C3 C2 C1 C2 C2 C3

Actual assignment (after feasibility checking) 

EST List J3 J5 J4 J1 J2 J6

Carer ID  C2 C1 C3 C3 C1 C2

Position value matrix for each particle at iteration 

t (after repairing) 

EST

Carer ID 
J3 J5 J4 J1 J2 J6

C1 3.4 0.5 5.4 3.5 2.3 2.3

C2 2.1 3.5 3.2 4.3 3.6 1.2

C3 4.2 2.3 1.6 1.2 3.4 4.5

 
Step 4. Update previous best position value and previous 

best fitness value. 
Initially, the previous best position value and pre-

vious best fitness value of particle kth, i.e. pbest0
ijk and 

pbest0
k are set equal to the initial position value and the 

initial objective value of each particle, respectively. At 
each iteration t, the current fitness value f(Assign(xt

k)) 
is compared with the previous best fitness value 
f(Assign(pbestt-1k)). If f(Assign(xt

k)) is less than f(Assign 
(pbestt-1k)), set pbestt

k equal to f(Assign(xt
k)) and pbesttijk 

equal to xt
ijk, which is the current position values of parti-

cle kth. 
 

Step 5. Update global best’s dimension index 
The initial global best particle, i.e. gbest0, refers to 
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the array index of particle which has the minimum value 
among pbest0k. Initially, the global best position value and 
the global best fitness value are equal to pbest0

ij,gbestº and 
pbest0gbestº, respectively. At each iteration t, the gbestt are 
updated. By comparing a new previous best fitness value 
with the global best fitness value, if f(Assign(pbestt

k)) is 
less than f (Assign(pbest

1

1
−

−

tgbest
t )), set gbestt = k.  

 
Step 6. Velocity calculation  

The velocity of each particle can be calculated by us-
ing the following formula.  

 
vt+1

ijk = χ [ wtvt
ijk + c1.r1.(pbesttijk – xt

ijk) 
+ c2.r2.(pbest tgbestij

t
, – xt

ijk)]          (5) 
 

The velocity is limited by a predefined maximum 
velocity (vmax) which is set equal to n/2. If vt+1

ijk > vmax, set 
vt+1

ijk = vmax. Note that the maximum velocity is limited by 
vmax to prevent the position values of the particle from 
changing too rapidly. The constriction factor, inertia wei-
ght, and acceleration constant are set according to the 
recommended values of 0.729, 0.9, and 2.0, respectively.  

 
Step 7. Update position value 

The position value of each dimension of a particle is 
updated according to the Eq.6. Consequently, the particle 
moves toward a new position and the new solution is ob-
tained. Note that the position values are updated without 
any restriction of xmin and xmax, which is used for initiali-
zation only. 

 
xt+1 

ijk = xt
ijk + vt+1

ijk                  (6) 
 

Step 8. Update inertia weight 
The inertia weight is updated at each iteration ac-

cording to the following formula: 
 

wt = wt × α                    (7) 
 
where, the decrement factor α is 0.975. 
 

Step 9. Termination 
Repeat Steps 2 to 8 until the stopping criterion is met. 

For this application, the maximum number of iterations 
(maxiter = 20) is the stopping criterion.  

4.4 Local Improvement Procedures (LIP) 

In order to overcome the fast convergence of stan-
dard PSO, the local improvement procedure (LIP) is ap-
plied during the searching phase. LIP is a simple and ef-
fective search algorithm, which can be applied easily to 
standard PSO. Since solutions encountered among parti-
cles during the search phase are differences, applying LIP 
encourages each particle to fine-tuned the search around 
its own searching area. It allows the particles to explore 

the search space more thoroughly, increases the possibil-
ity of finding better solution, escapes from local minima, 
and improves the solution quality. After the fitness 
value evaluation step, LIP is applied to the global best 
solution and some randomly selected previous best solu-
tions according to the specified number of selection 
(Nselect), which is set equal to 35% of popsize. The swap 
and insertion procedures are applied sequentially to the 
selected solutions. 

4.4.1 Swap Procedure 

The swap procedure interchanges activities between 
care workers’ routes. Given a set of care workers’ routes S 
= {R1, R2, ⋯Rp, ⋯Rq, ⋯, Rm}, each route consists of 
the sequence of service activities on that route. The pro-
cedure is done by selecting a pair of routes Rp and Rq. The 
routes are selected sequentially starting from R1 and R2 , 
and continue until Rm-1 and Rm. Suppose the set of care 
activities in route R1 and R2 are represented by R1 = {a11, 
a21, ⋯, anR1,1} and R2 = {a12, a22, ⋯, anR2,2}, respectively. 
The notation axy refers to the care activities in position x 
of route y. The swap procedure of care activities is per-
formed sequentially along these two routes. Beginning 
with exchanging the activities a11 and a12, then a11 and a22, 
and so on until a11and anR2,2, followed by exchanging the 
activities a21 and a12, then a21 and a22, and repeating the 
swap procedure until anR1,1 and anR2,2. In other words, ex-
change all pairs of activities sequentially from ax1, where 
x = 1, 2, ⋯, to nR1, with ax2, where x = 1, 2, ⋯, to nR2. 
In the swap procedure, the selected activity in one route 
may or may not be placed at the same position as the se-
lected activity in the other route but it is placed at a posi-
tion that is consistent with its time window. Only feasible 
moves, which do not violate capacity and time windows 
constraints, are accepted. After interchanging a pair of 
activities, the objective value is computed. The first-best 
strategy is used here. This accepts the first improving 
moves and adopts them as the new starting routes. In the 
case that moving results in the same objective value, the 
new route is accepted with a pre-defined probability. The 
acceptance probability (probaccept) is set equal to 0.5. 
Once the interchange of all pair activities between R1 and 
R2 is accomplished, the next pair of routes R1 and R3 is 
selected. Swap all pairs of activities between route R1 and 
R3 in the same manner and continue with the next pair of 
routes. Continue the same procedure until all pairs of 
routes are selected, or in other words, select Rp and Rq, 
where p = 1, 2, ⋯, m-1 and q = p+1, p+2, ⋯, m. 

Once the swap procedure is accomplished, the posi-
tion value matrix of all care activities will be revised ac-
cording to new schedule.  

4.4.2 Insertion Procedure 

A unique and efficient insertion procedure, which 
utilizes the priority matrix, is introduced. Recall the prior-
ity matrix from Table 3 section 4.3.1, the priority matrix 
represents the degree of attractiveness of each care 
worker’s route to the activity. Following the priority ma-
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trix, the care activities are removed one-by-one from the 
current route and inserted into the new route that has the 
next highest priority. Similarly, the selected activity is 
inserted into the new route at the position that is compati-
ble with its time windows. Then, feasibility checking and 
fitness value evaluation are performed.  

The procedure accepts the first improving move or 
the equivalent move with the probability probaccept, which 
is set equal to 0.5. If a better move is not found, the se-
lected activity seeks the next highest priority route. The 
insertion procedure will not try to insert into every care 
worker’s route since this would require a high computa-
tional effort. The number of care workers to be inserted is 
controlled by the parameter numinsert, which is set to 
50% of the total number of care workers’ routes.  

After the insertion procedure is completed, the posi-
tion value matrix is modified to be compatible with the 
new sequence. 

The insertion procedure allows activities to be added 
to the new route or deleted from the current route while 

the swap procedure encourages the changing of activities 
between routes. The combinations of both procedures 
allow the particle to explore the solution space more thor-
oughly and are very effective techniques in improving the 
solution quality of PSO. 

5.  COMPUTATIONAL EXPERIMENT 

The algorithm has been coded in MATLAB and tests 
have been performed on a Pentium M processor computer, 
1.6 GHz CPU speed, 512MB RAM.  

To test the performance of the Improved PSO algo-
rithm, a sample of ‘real’ data is used. There are five sets 
of test data selected randomly from the previous care ser-
vice data. The data consists of over 100 activities per day 
required by 50 clients and carried out by 12 care workers. 

The test results are compared with those obtained by 
the corresponding local government authority (the Welsh 
Systems Consortium) using its existing manual processes. 
They are also compared with the results obtained by the 
Advanced Internet and Emergent Systems Centre at the 
University of Liverpool, when using the proprietary soft-
ware ILOG™ Dispatcher 4.0.  

For each test case, PSO was run for 20 replications. 
Table 4 shows the problem size of each case, a compari-
son of the results, and a comparison of percentage of sav-
ings. Figure 1 presents the graphical comparison of dis-
tance traveled of all cases. From the experimental results, 
it can be seen that the improved PSO yields consistently 
and substantially better results for all test cases. The per-
centage of savings of PSObest to Welsh Systems Consor-
tium range from 91 to 274 percent, while the percentage 
of savings of PSObest to AiMES range from 11 to 44 per-
cent.  

To further verify the results, the statistical t-Test is 

Table 4. Test Results. 

Test  Problem size 
Welsh 

Consortium 
AiMES 

Improved 

PSOmean 

(Mean result)

Improved 

PSObest 

(Best result*)

%Saving 

(PSObest com-

pare to Welsh 

Consortium) 

%Saving 

(PSObest com-

pare to AiMES)

1 
106 Activities 

12 Carers 
591.5 348.7 328.3 306.8 92.8% 13.7% 

2 
101 Activities 

12 Carers 
642.7 384.4 353.3 332.3 93.4% 15.7% 

3 
106 Activities 

12 Carers 
658.0 416.8 378.0 351.8 87.0% 18.5% 

4 
111 Activities 

12 Carers 
1388.3 535.2 404.6 370.5 274.7% 44.5% 

5 
108 Activities 

12 Carers 
667.3 388.2 380.9 348.6 91.4% 11.4% 

Note) *Best results over 20 replications. 
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Figure 1. Comparison of distance traveled of Welsh Systems
Consortium, AiMES, PSOmean, and PSObest. 
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applied to test the difference in mean of the objective 
function between Improved PSO and AiMES. MINI-
TAB® Release 14 is used in the analysis of results. The 
results have shown that p-value of test cases Monday to 
Thursday are equal to 0 while p-value of Friday is equal 
to 0.017. Since p < 0.05 for all test cases, then at the 95% 
confidence level the mean differences of all cases are 
significant. It can be concluded that the results obtained 
from Improved PSO are significantly better than those 
obtained from AiMES, at the 95% confidence level. 

The average computation time for the improved PSO 
is approximately 3.5 minutes whereas ILOG averaged 0.5 
minutes. However, such a comparison is not conclusive as 
the experimental PSO software has not been developed 
and tuned to commercial standards.  

6.  CONCLUSION AND FUTURE RESEARCH 

This paper has presented an improved particle swarm 
optimization (PSO) algorithm for scheduling home care 
workers, with the objective of minimising the sum of the 
distances travelled by the care workers, without violating 
the capacity and delivery time window constraints. To the 
authors knowledge, this is the first time that a PSO meta-
heuristic has been applied to care worker scheduling.  

Due to the continuous nature of PSO, the heuristic 
assignment scheme has been especially designed for this 
problem in order to translate the continuous value to a 
discrete schedule. The initial solution technique, Earliest 
Start Time Priority with Minimum Distance Assignment 
(ESTPMDA) has been employed to direct the search di-
rection of the particles used in the algorithm. During the 
searching stage of PSO, the local improvement proce-
dures (LIP) insertion and swap have been applied in order 
to further improve the quality of the solution.  

The proposed methodology has been tested on ‘real’ 
data and the results compared with those obtained using 
the current manual procedures and those obtained using 
ILOG™. For the test cases the improved PSO algorithm 
consistently produced the best results.  

Future research will extend to a multi-objective 
function to minimize the number of care workers and the 
total distance traveled. Also, experiments will be con-
ducted to understand more about the effects of the PSO 
algorithm’s parameters. 
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