• Title/Summary/Keyword: Local linear embedding

Search Result 15, Processing Time 0.03 seconds

The Prediction of Chaos Time Series Utilizing Inclined Vector (기울기백터를 이용한 카오스 시계열에 대한 예측)

  • Weon, Sek-Jun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.421-428
    • /
    • 2002
  • The local prediction method utilizing embedding vector loses the prediction power when the parameter r estimation is not exact for predicting the chaos time series induced from the high order differential equation. In spite of the fact that there have been a lot of suggestions regarding how to estimate the delay time ($\tau$), no specific method is proposed to apply to any time series. The inclinded linear model, which utilizes inclinded netter, yields satisfying degree of prediction power without estimating exact delay time ($\tau$). The usefulness of this approach has been indicated not only theoretically but also in practical situation when the method w8s applied to economical time series analysis.

Feature Extraction via Sparse Difference Embedding (SDE)

  • Wan, Minghua;Lai, Zhihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3594-3607
    • /
    • 2017
  • The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the locality of LLE with a sparse constraint, we developed an improved and unsupervised difference algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of high-dimensional data in small sample size problems. Significantly differing from the existing PCA and LLE algorithms, SDE seeks to find a set of perfect projections that can not only impact the locality of intraclass and maximize the globality of interclass, but can also simultaneously use the Lasso regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments using the Yale and AR face image databases and the USPS handwriting digital databases. The experimental results show that SDE outperforms PCA LLE and UDP attributed to its sparse discriminating characteristics, which also indicates that the SDE is an effective method for face recognition.

Local Linear Transform and New Features of Histogram Characteristic Functions for Steganalysis of Least Significant Bit Matching Steganography

  • Zheng, Ergong;Ping, Xijian;Zhang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.840-855
    • /
    • 2011
  • In the context of additive noise steganography model, we propose a method to detect least significant bit (LSB) matching steganography in grayscale images. Images are decomposed into detail sub-bands with local linear transform (LLT) masks which are sensitive to embedding. Novel normalized characteristic function features weighted by a bank of band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched by using a threshold selection algorithm. Extensive experiments are performed on four diverse uncompressed image databases. In comparison with other well-known feature sets, the proposed feature set performs the best under most circumstances.

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

A review on the t-distributed stochastic neighbors embedding (t-SNE에 대한 요약)

  • Kipoong Kim;Choongrak Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.167-173
    • /
    • 2023
  • This paper investigates several methods of visualizing high-dimensional data in a low-dimensional space. At first, principal component analysis and multidimensional scaling are briefly introduced as linear approaches, and then kernel principal component analysis, self-organizing map, locally linear embedding, Isomap, Laplacian Eigenmaps, and local multidimensional scaling are introduced as nonlinear approaches. In particular, t-SNE, which is widely used but relatively unfamiliar in the field of statistics, is described in more detail. We also present a simple example for several methods, including t-SNE. Finally, we provide a review of several recent studies pointing out the limitations of t-SNE and discuss the future research problems presented.

CONICS IN QUINTIC DEL PEZZO VARIETIES

  • Kiryong Chung;Sanghyeon Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.357-375
    • /
    • 2024
  • The smooth quintic del Pezzo variety Y is well-known to be obtained as a linear sections of the Grassmannian variety Gr(2, 5) under the Plücker embedding into ℙ9. Through a local computation, we show the Hilbert scheme of conics in Y for dimY ≥ 3 can be obtained from a certain Grassmannian bundle by a single blowing-up/down transformation.

Modelling of timber joints made with steel dowels and locally reinforced by DVW discs

  • Guan, Zhongwei;Rodd, Peter
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.391-404
    • /
    • 2003
  • Local reinforcement in dowel type timber joints is essential to improve ductility, to increase load carrying capacity and to reduce the risk of brittle failure, especially in the case of using solid dowel. In many types of reinforcing materials available today, DVW (densified veneer wood) has been demonstrated to be the most advantages in terms of compatibility, embedding performance and ductility. Preliminary studies show that using appropriately sized DVW discs bonded into the timber interfaces may be an effective way to reinforce the connection. In this paper, non-linear 3-dimensional finite element models, incorporating orthotropic and non-linear material behaviour, have been developed to simulate structural performance of the timber joints locally reinforced by DVW discs. Different contact algorithms were applied to simulate contact conditions in the joints. The models were validated by the corresponding structural tests. Correlation between the experimental results and the finite element simulations is reasonably good. Using validated finite element models, parametric studies were undertaken to investigate effects of the DVW disc sizes and the end distances on shear stresses and normal stresses in a possible failure plane in the joint.

Domain-Specific Terminology Mapping Methodology Using Supervised Autoencoders (지도학습 오토인코더를 이용한 전문어의 범용어 공간 매핑 방법론)

  • Byung Ho Yoon;Junwoo Kim;Namgyu Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.93-110
    • /
    • 2023
  • Recently, attempts have been made to convert unstructured text into vectors and to analyze vast amounts of natural language for various purposes. In particular, the demand for analyzing texts in specialized domains is rapidly increasing. Therefore, studies are being conducted to analyze specialized and general-purpose documents simultaneously. To analyze specific terms with general terms, it is necessary to align the embedding space of the specific terms with the embedding space of the general terms. So far, attempts have been made to align the embedding of specific terms into the embedding space of general terms through a transformation matrix or mapping function. However, the linear transformation based on the transformation matrix showed a limitation in that it only works well in a local range. To overcome this limitation, various types of nonlinear vector alignment methods have been recently proposed. We propose a vector alignment model that matches the embedding space of specific terms to the embedding space of general terms through end-to-end learning that simultaneously learns the autoencoder and regression model. As a result of experiments with R&D documents in the "Healthcare" field, we confirmed the proposed methodology showed superior performance in terms of accuracy compared to the traditional model.

Super Resolution Technique Through Improved Neighbor Embedding (개선된 네이버 임베딩에 의한 초해상도 기법)

  • Eum, Kyoung-Bae
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.737-743
    • /
    • 2014
  • For single image super resolution (SR), interpolation based and example based algorithms are extensively used. The interpolation algorithms have the strength of theoretical simplicity. However, those algorithms are tending to produce high resolution images with jagged edges, because they are not able to use more priori information. Example based algorithms have been studied in the past few years. For example based SR, the nearest neighbor based algorithms are extensively considered. Among them, neighbor embedding (NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the sizes of local training sets are always too small. So, NE algorithm is weak in the performance of the visuality and quantitative measure by the poor generalization of nearest neighbor estimation. An improved NE algorithm with Support Vector Regression (SVR) was proposed to solve this problem. Given a low resolution image, the pixel values in its high resolution version are estimated by the improved NE. Comparing with bicubic and NE, the improvements of 1.25 dB and 2.33 dB are achieved in PSNR. Experimental results show that proposed method is quantitatively and visually more effective than prior works using bicubic interpolation and NE.