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Abstract 
 

The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain 
the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure 
of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot  
deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the 
locality of LLE with a sparse constraint, we developed an improved and unsupervised difference 
algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of 
high-dimensional data in small sample size problems. Significantly differing from the existing PCA and 
LLE algorithms, SDE seeks to find a set of perfect projections that can not only  impact the locality of 
intraclass and maximize the globality of interclass, but can also  simultaneously use the Lasso 
regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and 
more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments 
using the Yale and AR  face image databases and the USPS handwriting digital databases. The 
experimental results show that SDE outperforms PCA LLE and  UDP attributed to its sparse 
discriminating characteristics, which also indicates that the SDE is an effective method for face 
recognition. 
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1. Introduction 

Subspace learning methods have attracted much attention in the field of feature extraction 
[1–4]. Two of the most fundamental linear methods are Principal Component Analysis (PCA) 
[5] and Linear Discriminant Analysis (LDA) [6], which have been successfully applied to 
many classification problems such as speech recognition, face recognition and multimedia 
information retrieval. PCA aims to find a set of optimal orthogonal vectors in the sense of 
minimum mean square error and preserves the global Euclidean structure of the data space. 
LDA tries to find a set of optimal projection vectors by maximizing the ratio of the 
between-class scatter to the within-class scatter of the training samples. In order to solve the 
small sample size (SSS) problems in image vectors based on face recognition, many schemes 
[1–3] have been proposed.  
  Some researchers have shown that the face space is more likely to exist in the low 
-dimensional nonlinear manifold subspace [7]. Therefore, researchers have proposed a large 
number of nonlinear manifold learning methods. The representative methods are Locally 
Linear Embedding (LLE) [8], Isomaptic Map (Isomap) [9], Laplacian Eigenmap (LE) [10] and 
so on. He et al. subsequently proposed Locality Preserving Projections (LPP) [11,12], which is 
a linear subspace learning method derived from Laplacian Eigenmap. Yang et al. proposed an 
Unsupervised Discriminant Projection (UDP) [13] algorithm to address the limitation of LPP 
for the clustering and classification tasks, considering the nonlocal and local quantities at the 
same time. In the past few years, manifold learning and sparse representation have been 
widely used for feature extraction and dimensionality reduction[14]. 
  However, all the methods mentioned above find it difficult to give a reasonable interpretation 
of which features or variables play an important role in real-world applications such as feature 
extraction and classification [15]. In recent years, sparse subspace learning has aroused great 
interest from researchers [16,17]. The more effective sparse feature extraction methods are 
Lasso [18], Lars [19], Elastic Net [20] and so on[21,22]. Robust Structured Subspace Learning 
(RSSL)[23] is adopted as an intermediate space to reduce the semantic gap between the 
low-level visual features and the high-level semantics by integrating image understanding and 
feature learning into a joint learning framework. With the norm, these methods can make the 
corresponding coefficient of the partial characteristics shrink to zero. Zhang [24] proposed  
three kinds of local information, namely, local similarity information, local intra-class pattern 
variation and local inter-class pattern variation. 

In order to obtain the local structure and global structure of the data at the same time, and 
eventually get a sparse transformation matrix, on the basis of sparse subspace learning and 
manifold learning, in this paper we propose a feature extraction method called Sparse 
Difference Embedding (SDE). PCA is the global linear method which preserves total variance 
by maximizing the feature covariance matrix trace. The low-dimensional data obtained by 
LLE  preserves the topology of the original space. Integrating PCA and LLE, SDE seeks to 
minimize the difference, rather than the ratio, between the local minimizing embedding 
obtained by LLE and the global maximizing variance obtained by PCA, and then join a sparse 
constraint in the objective function [25]. The results of experiments on the Yale and AR face 
image database verify the effectiveness of the proposed method. 
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  The rest of this paper is organized as follows. In section 2,  we review the ideas of the relevant 
methods. In section 3, we propose the idea of SDE in detail. In section 4, experiments are 
presented to verify the effectiveness of SDE on  the Yale and AR face image databases  and the 
USPS handwriting digital databases, and compare it with other methods (PCA, LDA and LLE). 
Finally we give concluding remarks and a discussion of future work in section 5. 

2. Outline of relevant methods 

Let us consider a set of N  data vector { , ,..., },1 2
nX x x x x RN i= ∈ , taking values in a n  

dimensional image space. Let us also consider a linear transformation mapping the original 
n dimensional space into a d dimensional feature space { , ,..., }1 2Y y y yN=  , where dy Ri∈  and 

n d> . The new feature vectors dy Ri∈ are defined by the following linear transformation: 

 , 1,...,Ty U x i Ni i= =   (1) 

where n dU R ×∈ is a transformation matrix. 
 
2.1 Principal Component Analysis (PCA) 

PCA is one of the most commonly used linear methods. Assume that a point in space is 
projected into a vector. First, the central point of the original space is defined as: 

 1

1

N
x xiN i
= ∑

=
  (2) 

Assuming that U  is the transformation matrix, the variance after the projection is defined 
as: 

 1 2( )
1

N T T TU x U x U SUiN i
− =∑

=
  (3) 

Using the Lagrange multiplier method, the optimization of the content on the right-hand 
side of the equal sign is defined as: 
 (1 ) 0T TU SU U Uλ+ − =   (4) 

Take  the derivative and find the integration of the formula, and make it equal to 0: 
 SU Uλ=   (5) 

Then we can obtain the matrix of the biggest variance by taking the projection matrix 
consisting of the front d  eigenvectors. 
 
2.2 Locally Linear Embedding (LLE) 

LLE is one of the most classic methods of manifold learning, which can better maintain the 
original manifold structure after dimensionality reduction. The main process of the algorithm 
is divided into three steps. 

The first step of LLE is to select k -nearest neighbors of each data point xi  using Euclidean 
distances. 
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The second step of LLE is to calculate the reconstructing weight matrix W wij N N
 =   ×

, 

which reconstructs each point xi  from its k -nearest neighbors. We can obtain the coefficient 
matrix W  by minimizing the reconstruction error: 

 
2

min ( )
1 1

N N
J W x w xL i ij j

i j
= −∑ ∑
= =

  (6) 

where 0wij=  if xi  and x j  are not neighbors, and the rows of W  sum to 1: 1
1

N
wij

j
=∑

=
. 

The reconstruction error for xi can be converted to this form: 

 
( )

( ) ( )

2 2

1 1

1 1 1 1

N N
x w x w x xi ij j ij i ji j j

N N N N iw x x w x x w w Gij i j it i t ij it jt
j t j t

ξ = − = −∑ ∑
= =

∑ ∑ ∑= − − = ∑
= = = =

  (7) 

where ( ) ( )TiG x x x xi j i tjt = − − , called the local Gram matrix. By solving the least-squares 

problem with the constraint 1
1

N
wij

j
=∑

=
, the optimal coefficients are given: 

 
( )
( )

1

1
1

1 1

N iG
jttwij N N iG

pqp q

−
∑
==

−
∑ ∑
= =

  (8) 

After repeating the first step and the second step performed on all the N  data points, we can 

calculate the reconstruction weights to construct a weight matrix W wij N N
 =   ×

. 

The third step of LLE is to reconstruct represented yi  by the weight matrix W . To maintain 
the intrinsic geometrical feature of the data after the embedding process, the reconstruction 
error function must be minimized: 

 
2

min ( )
1 1

N N
J Y y w yL i ij j

i j
= −∑ ∑
= =

  (9) 

where yi is the mapping output of xi , y j is a neighbor of yi . 

Considering the transformation Ty U xi i= , the objective function reduces to 
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 ( )( )
( ) ( ){ }

{ }

2
( )

1 11 1 1

1 1 1

TN NN N N
J U y w y tr y w y y w yi ij j i ij j i ij jL i ij j j

T
N N N

tr y w y y w yi ij j i ij j
i j j

TT T Ttr Y I W I W Y

T Ttr Y I W I W Y

T Ttr U X MX U

      ∑ ∑= − = − −∑ ∑ ∑   = =  = = =   

      = − −∑ ∑ ∑    = = =   

  = − − 
  

= − −

=

  (10) 

where ( ) ( )TM I W I W= − − . 
 

2.3 Lasso regression 
In this paper, we use the least absolute shrinkage and selection operator (Lasso) algorithm to 

obtain a sparse sample solution. This algorithm is obtained by constructing a penalty function 
to obtain a refined model. It is a biased estimate of the processing of complex linear data. The 
basic idea of Lasso is to minimize the sum of squared residuals under the condition that the 
absolute value of the regression coefficient is less than a constant, which can produce a 
regression coefficient that is strictly equal to 0; then we can obtain an explanatory model. 

Assume that we have data ( , ), 1,2,...,iX y i Ni = , and here ( ,... )1
i TX x xi ip=  are the variables of the 

ith  observation value, yi  are the corresponding response variables，and p is the number of 
elements in xi . Consider the linear regression model:  

 
1

p
y xi i j ij i

j
α β ε= + +∑

=
  (11) 

In the general regression structure, assume that the observation values are independent of 
each other, or that the response variable yi  is independent of the condition of the observed 
values that are given, that is: 

 1 1 20, 0,x xij ijN Nj j
= =∑ ∑   (12) 

The Lasso is estimated to be: 

 
2( , ) arg min{ ( ) }

. . | |

y xi i j ij
i j

s t tj
j

α β α β

β

∧ ∧
∑= − −∑

∑ ≤

  (13) 

Here 0t≥ , it is a harmonic parameter，and for all t , the estimate of α : yα
∧
= . Assuming 

that 0y= , then α  will be omitted. The control of harmonic parameters t  makes the regression 
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coefficient smaller. Let | |,0 0t t tj
j
β= ≤∑ , and it will reduce the number of regression coefficients 

and tend to 0; some of the coefficients will  even equal 0. 

3. Sparse Difference Embedding (SDE) 
PCA is a global method but it cannot find the local structure of the data. LLE sought a 

manifold approximated as linear on the local neighbourhood. Combining the global structure 
of PCA and the local structure of LLE, we propose a feature extraction method called Sparse 
Difference Embedding (SDE), which is an unsupervised linear method. SDE attempts to 
create neighbour samples of the original space that are still in the same neighbourhood after 
being projected into subspace, or far away from each other if not in the same neighbourhood. 
In addition, we join the sparse constraint in the objective function with solving a constrained 
optimization problem through the Lasso algorithm to achieve this goal. 

 
3.1 Locally minimizing embedding 

To begin with, we propose to minimize the local scatter compactness of each data point by 
linear coefficients that reconstruct the data point from other points. The technique of local 
representation is the same as LLE. Considering Equation (9), the objective function is: 

 
2

min ( )
1 1

N N
J Y y w yL i ij j

i j
= −∑ ∑
= =

  (14) 

The objective function reduced from Equation (10) is as follows: 

 { }
2

( )
1 1

N N T TJ U y w y tr V X MX Vi ij jL i j
∑= − =∑
= =

  (15) 

 
3.2 Globally maximizing variance 

Secondly, we propose to maximize the sum of pairwise squared distances between outputs, 
where PCA preserves the global geometric structure of data in a transformed low-dimensional 
space. Therefore, maximizing the global scatter of samples is considered: 

 2max ( )
1

N
J Y y yG i

i
= −∑
=

  (16) 

Considering the transformation in Equation (1), the objective function can be simplified as 

 

( )

{ }
{ }

22( )
1 1

( )( )
1

N N TJ U y y U x xi iG i i
N T Ttr U x x x x Ui i

i
Ttr U S UT

∑ ∑= − = −
= =

= − −∑
=

=

  (17) 

where 1

1

N
y yiN i
= ∑

=
, 1

1

N
x xiN i
= ∑

=
, and ST is the total scatter matrix. 
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3.3 Optimization criterion of SDE 

Lastly, when local minimizing embedding and global maximizing variance have been 
constructed, an intuitive motivation is to find a common projection that minimizes local scatter 
and maximizes global scatter at the same time, and then joins the sparse constraint in the 
objective function. Actually, we can obtain such a projection by the following multi-object 
optimized problem with a sparse constraint, that is: 

 

{ }
{ }

min

max

s.t.

( )

T Ttr U XMX U

Ttr U S YT

T TU XDX U I

Card U K







=

=

  (18) 

( )Card U is the number of the non-zero elements in U . SDE seeks to minimize the difference, 
rather than the ratio, between the local minimizing embedding and the global maximizing 
variance. So it can be changed into the following constrained problem: 

 
( )( ){ }min 1

s.t.

( )

T Ttr U XMX S UT

T TU XDX U I

Card U K

α α


− −

 =

=

  (19) 

( )0 1α α≤ < is the balance parameter. The minimization can be solved by the Lagrange 
multiplier method: 

 ( )( ) ( ){ }1 0T T T Ttr u XMX S u u XDX u IT iU
α α λ∂
− − − − =

∂
  (20) 

 

Let ( ),
0

L U
U
λ∂

=
∂

, then 

 ( )
.

1

( ).

T TXMX S u XD

s t

X uT i i i

Card U K

α α λ − − =  
 =

  (21) 

 
where ui is a generalized eigenvector corresponding to a generalized eigenvalue iλ . 
However, ui is not a sparse matrix. Using the Lasso algorithm, with a 1L -norm on 

ui , we have: 

 2arg min( ( ) | |)
1 1

m nTU u x y ui i i j
i j

β= − +∑ ∑
= =

  (22) 

However, the number of features selected by Lasso is limited by the number of samples, 
so we integrate the Lasso regression and Ridge regression [20]: 

 2 2arg min( ( ) | | ( ) )
1 1 1

m n nTU u x y u ui i i j j
i j j

β γ= − + +∑ ∑ ∑
= = =

  (23) 

Then we get an optimal sparse transformation matrix. 
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3.4 SDE algorithm 

The following steps summarize the SDE algorithm described previously: 
Step 1. Compute the ( )J UL and ( )J UG  matrices using Equations (15) and (17), 

respectively. 
Step 2. Compute the multi-object optimized problem with a sparse constraint using 

Equation (18). 
Step 3. Integrate the Lasso regression and Ridge regression using Equations (23). 
Once the project matrixU is obtained through using the SDE algorithm, the nearest 

neighbour classification becomes straightforward. 

4. Experiments and results 
In order to verify the effectiveness of the proposed method, we compared it with several 

other methods (PCA, LDA, UDP and LLE) on the Yale and AR face image databases and the 
USPS handwriting digital databases. The ORL database was used to examine the performance 
of the algorithm under conditions where the pose and sample size were varied. Evaluation of 
the SDE algorithm on variations in both facial expressions and illumination was performed by 
using the Yale face database. Euclidean distance and nearest neighbour classifier were used in 
all the experiments. All the experiments used PCA for processing, with about 95% energy of 
the pictures held. The experiments were carried out on the same computer (Intel (R) Core 
i3-2130 3.40GHz, Matlab 2014a). 

 
4.1 Experiments using the USPS handwriting digital database 

The USPS handwriting digital data includes 10 classes designated from “0” to “9”. Each 

class has 1100 examples. In this experiment, a subset was selected from the original database. 

Each image is then cropped to have the size of 16×16. There are 100 images for each class in 

the subset and the total number is 1000. Fig. 1 displays a subset of digital “2” from original 

USPS handwriting digital database.  

 
Fig. 1. The sample digital images “2”from the USPS handwriting database. 
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For each individual, l (=20, 30, 40, 50, 60) images were randomly selected as training 

samples, and the rests were used for test. For feature extraction, PCA (eigenface), LDA 

(Fisherface), LLE, UDP and the proposed SDE were used. It is noted that LDA, LLE, UDP 

and the proposed SDE all involve using a PCA phase. For different algorithms, the optimal 

PCA dimension may be different, and it is possible it is still an open problem to choose the 

optimal dimension of PCA. For fair comparisons, in this phase, we kept nearly 95% image 

energy and selected the number of principal components as 30 for each method. In general, the 

recognition rates varied with the dimension of the face subspace. The best recognition 

accuracy of different algorithms is shown in Table 1.  

 
Table 1. The best recognition accuracy (%) of different algorithms, with the corresponding 

dimension shown in parentheses. 

 PCA LDA LLE UDP SDE 
20 80.88 (20) 82.72 (7) 78.93 (28) 80.53(30) 82.03 (12) 
30 84.56 (20) 85.83 (9) 82.75 (30) 85.71(30) 86.17 (15) 
40 86.72 (29) 86.80 (8) 85.70 (29) 87.51(27) 88.25 (20) 
50 87.96 (26) 88.00 (9) 86.78 (30) 88.45(20) 89.46 (20) 
60 88.90 (27) 88.57 (9) 88.82 (30) 89.26(29) 90.40 (30) 

 
4.2 Experiments on the Yale face database 

  The Yale face database (http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html) 

contains 165 gray scale images of 15 individuals, each individual has 11 images. The images 

demonstrate variations in lighting condition, facial expression (normal, happy, sad, sleepy, 

surprised, and wink).  Fig. 2 show the sample images from the Yale database.  In the 

experiments, l  images ( l  varied from 4 to 6) were randomly selected from the image gallery 

of each individual to form the training sample set. The remaining 11 l− images were used for 

testing. For each experiment with a different training sample size, we independently ran each 

experiment 10 times. The maximal recognition accuracy of different algorithms is shown in 

Table 2. Fig. 3 shows the variation of average recognition rate by using different algorithms with the 

dimension. 

 

 
Fig. 2. Images of one person on the Yale face database. 
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Table 2. The maximal recognition rates (%), with the corresponding dimension shown in parentheses, 
of the five methods on the Yale face database versus the variation of the training sample sizes. 

 
 PCA LDA LLE UDP SDE 
4 61.30(50) 74.29(6) 70.51(47) 80.50(50) 86.76(27) 
5 60.75(41) 77.33(8) 70.49(47) 82.76(47) 86.11(31) 
6 61.52(50) 81.11(8) 72.18(43) 84.75(49) 88.40(48) 

 

 
Fig. 3. The average recognition rate (%) of different algorithms varying with feature dimensions when 

the training sample size is 6 on the Yale face database. 
 
4.3 Experiments on AR the face database 

 The AR face database (http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html) 

contains over 4,000 color face images of 126 people (70 men and 56 women), including 

frontal views of faces with different facial expressions, lighting conditions, and occlusions. 

Fig. 4 show the sample images from the AR database. In the experiments, we chose a subset of 

the AR face database which contained the front 40 people, where each person had 10 images. 

Then l  images ( l  varied from 4 to 6) were randomly selected from the image gallery of each 

individual to form the training sample set. The remaining 10 l−  images were used for testing. 

For each experiment with a different training sample size, we independently ran each 

experiment 10 times. The average recognition rate of different algorithms when 5 images per 

person were randomly selected for training is shown in Fig. 5, varying with dimensions. 
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Fig. 4. Images of one person on the AR face database. 

 
Table 3. The maximal recognition rates (%), with the corresponding dimension shown in parentheses, 

of the five methods on the AR face database versus the variation of the training sample sizes. 
 PCA LDA LLE UDP SDE 
4 56.81(50) 59.58(32) 74.45(47) 80.15(50) 81.33(47) 
5 56.54(49) 67.50(22) 76.65(50) 84.80(50) 87.15(49) 
6 55.42(47) 79.30(25) 74.95(50) 86.08(50) 92.18(50) 

 

 
Fig. 5. The average recognition rate (%) of different algorithms varying with feature dimensions when 

the training sample size is 6 on the AR face database. 
 

 
4.4 Analysis 

From the results in Table 1, Table 2, Fig. 3 and Fig. 5, we can see first that with a 

different training sample size, the maximal recognition rates (%) of SDE are significantly 

higher than that of the other three methods. Secondly, when the training sample size is 6, the 

result of SDE is more robust than that of PCA, LDA, UDP and LLE; with the increase in the 

feature dimension, the recognition rate is continuously rising based on the test results by using 

the USPS handwriting digital database, and Yale and AR face image databases. For tests 

conducted on images from the USPS, and Yale and AR face image databases, the best 

performances of average recognition rates of using SDE exceed the best performances of 

using the other methods. Experimental results of using the USPS, Yale face and AR face 

databases (Tables 1 to 3) show that the increases in the best performances of average 

recognition rates by using SDE are higher than the results from the other algorithms. The 
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reason may be that, on the one hand, SDE can obtain the local structure and non-local structure 

of the samples at the same time, but PCA, LDA, UDP and LLE can obtain only the local or 

non-local structures. On the other hand, the sparsity can extract more effective discriminant 

features from the training samples. The advantage of the SDE algorithm is that it can 

efficiently handle the vagueness and ambiguity of samples being degraded by poor 

illumination, shape and facial expression variation, yet it does not change the class of samples. 

The affinity weights of the novel neighbourhood graphs (intra-class and inter-class) instead of 

the weights of the binary pattern are defined, which reduces the sensitivity of the method to the 

substantial sample variations caused by illumination, shape and viewing conditions. 

Furthermore, the outlier images may cause errors in the estimation of intra-class scatter and 

global covariance and lead to low recognition rates for PCA and LDA methods, while the SDE 

method minimizes the effects of outlier images. The factors discussed above contribute to the 

superior effectiveness of the SDE method. 

5. Conclusion 
In this paper, we developed an unsupervised linear method called Sparse Difference 

Embedding (SDE), which combined the two methods of PCA and LLE, preserving the global 

structure and local structure data at the same time. In addition, we joined the sparse constraint 

in the method with solving a constrained optimization problem by the Lasso algorithm, and 

finally we obtained a sparse solution. The most important and interesting observation is that 

the sparse projections learned by SDE have a direct physical interpretation on which features 

or variables are contributive to feature extraction and discrimination. The results of the 

experiments on the Yale face database, AR face database and USPS handwriting digital 

databases showed that, in comparison with PCA, LDA, UDP and LLE, SDE had a higher 

performance in feature extraction. Specifically, for face recognition, the sparse face subspaces 

show us an intuitive, semantic and insightful understanding of the feature extraction. In future 

work, we will extend the SDE algorithm to kernel and tensor form via the kernel and tensor 

methods, respectively. 
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