• Title/Summary/Keyword: Local likelihood

Search Result 145, Processing Time 0.022 seconds

QUASI-LIKELIHOOD REGRESSION FOR VARYING COEFFICIENT MODELS WITH LONGITUDINAL DATA

  • Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.367-379
    • /
    • 2004
  • This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.

Inference for Order Restrictions on Odds in 2 * k Contingency Tables

  • Oh, Myong-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.381-391
    • /
    • 1996
  • In the analysis of contingency table with ordered categories, the relationship between odds for adjacent categories has received con-siderable interest. We consider likelihood ratio tests of independence against an order restriction on odds in 2 $\times$ k contingency tables.

  • PDF

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Modified Local Density Estimation for the Log-Linear Density

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We consider local likelihood method with a smoothed version of the model density in stead of an original model density. For simplicity a model is assumed as the log-linear density then we were able to show that the proposed local density estimator is less affected by changes among observations but its bias increases little bit more than that of the currently used local density estimator. Hence if we use the existing method and the proposed method in a proper way we would derive the local density estimator fitting the data in a better way.

  • PDF

Local Linear Logistic Classification of Microarray Data Using Orthogonal Components (직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석)

  • Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.587-598
    • /
    • 2006
  • The number of variables exceeds the number of samples in microarray data. We propose a nonparametric local linear logistic classification procedure using orthogonal components for classifying high-dimensional microarray data. The proposed method is based on the local likelihood and can be applied to multi-class classification. We applied the local linear logistic classification method using PCA, PLS, and factor analysis components as new features to Leukemia data and colon data, and compare the performance of the proposed method with the conventional statistical classification procedures. The proposed method outperforms the conventional ones for each component, and PLS has shown best performance when it is embedded in the proposed method among the three orthogonal components.

Test of the Hypothesis based on Nonlinear Regression Quantiles Estimators

  • Choi, Seung-Hoe
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This paper considers the likelihood ratio test statistic based on nonlinear regression quantiles estimators in order to test of hypothesis about the regression parameter $\theta_o$ and derives asymptotic distribution of proposed test statistic under the null hypothesis and a sequence of local alternative hypothesis. The paper also investigates asymptotic relative efficiency of the proposed test to the test based on the least squares estimators or the least absolute deviation estimators and gives some examples to illustrate the application of the main result.

  • PDF

TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

  • Huang, Zhensheng;Zhang, Riquan
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-407
    • /
    • 2010
  • To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the $\chi^2$-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.

Likelihood search method with variable division search

  • Koga, Masaru;Hirasawa, Kotaro;Murata, Junichi;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.14-17
    • /
    • 1995
  • Various methods and techniques have been proposed for solving optimization problems; the methods have been applied to various practical problems. However the methods have demerits. The demerits which should be covered are, for example, falling into local minima, or, a slow convergence speed to optimal points. In this paper, Likelihood Search Method (L.S.M.) is proposed for searching for a global optimum systematically and effectively in a single framework, which is not a combination of different methods. The L.S.M. is a sort of a random search method (R.S.M.) and thus can get out of local minima. However exploitation of gradient information makes the L.S.M. superior in convergence speed to the commonly used R.S.M..

  • PDF

Testing of a discontinuity point in the log-variance function based on likelihood (가능도함수를 이용한 로그분산함수의 불연속점 검정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Let us consider that the variance function in regression model has a discontinuity/change point at unknown location. Yu and Jones (2004) proposed the local polynomial fit to estimate the log-variance function which break the positivity of the variance. Using the local polynomial fit, Huh (2008) estimate the discontinuity point of the log-variance function. We propose a test for the existence of a discontinuity point in the log-variance function with the estimated jump size in Huh (2008). The proposed method is based on the asymptotic distribution of the estimated jump size. Numerical works demonstrate the performance of the method.

  • PDF