• Title/Summary/Keyword: Local existence

Search Result 362, Processing Time 0.018 seconds

LOCAL EXISTENCE AND GLOBAL UNIQUENESS IN ONE DIMENSIONAL NONLINEAR HYPERBOLIC INVERSE PROBLEMS

  • Choi, Jong-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.593-606
    • /
    • 2002
  • We prove local existence and global uniqueness in one dimensional nonlinear hyperbolic inverse problems. The basic key for showing the local existence of inverse solution is the principle of contracted mapping. As an application, we consider a hyperbolic inverse problem with damping term.

GLOBAL EXISTENCE OF SOLUTIONS TO THE PREY-PREDATOR SYSTEM WITH A SINGLE CROSS-DIFFUSION

  • Shim, Seong-A
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.443-459
    • /
    • 2006
  • The prey-predator system with a single cross-diffusion pressure is known to possess a local solution with the maximal existence time $T\;{\leq}\;{\infty}$. By obtaining the bounds of $W\array_2^1$-norms of the local solution independent of T we establish the global existence of the solution. And the long-time behaviors of the global solution are analyzed when the diffusion rates $d_1\;and\;d_2$ are sufficiently large.

EXISTENCE AND REGULARITY FOR SEMILINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.631-637
    • /
    • 2014
  • In this paper, we construct some results on the existence and regularity for solutions of neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the existence and regularity for solutions of the neutral system by using fractional power of operators and the local Lipschtiz continuity of nonlinear term without using many of the strong restrictions considering in the previous literature.

EXISTENCE AND ASYMPTOTICS FOR THE TOPOLOGICAL CHERN-SIMONS VORTICES OF THE CP(1) MODEL

  • NAM HEE-SEOK
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.169-178
    • /
    • 2005
  • In this paper we study the existence and local asymptotic limit of the topological Chern-Simons vortices of the CP(1) model in $\mathbb{R}^2$. After reducing to semilinear elliptic partial differential equations, we show the existence of topological solutions using iteration and variational arguments & prove that there is a sequence of topological solutions which converges locally uniformly to a constant as the Chern­Simons coupling constant goes to zero and the convergence is exponentially fast.

  • PDF

LOCAL EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR A NONLINEAR PSEUDOPARABOLIC EQUATION WITH VISCOELASTIC TERM

  • Nhan, Nguyen Huu;Nhan, Truong Thi;Ngoc, Le Thi Phuong;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.35-64
    • /
    • 2021
  • In this paper, we investigate an initial boundary value problem for a nonlinear pseudoparabolic equation. At first, by applying the Faedo-Galerkin, we prove local existence and uniqueness results. Next, by constructing Lyapunov functional, we establish a sufficient condition to obtain the global existence and exponential decay of weak solutions.

SOLVABILITY OF OVERDETERMINED PDE SYSTEMS THAT ADMIT A COMPLETE PROLONGATION AND SOME LOCAL PROBLEMS IN CR GEOMETRY

  • Han, Chong-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.695-708
    • /
    • 2003
  • We study the existence of solutions for overdetermined PDE systems that admit prolongation to a complete system. We reduce the problem to a Pfaffian system on a submanifold of the jet space of unknown functions and then express the integrability conditions in terms of the coefficients of the original system. As possible applications we present some local problems in CR geometry: determining the CR embeddibility into spheres and the existence of infinitesimal CR automorphisms.

EXISTENCE OF SOLUTIONS OF QUASILINEAR INTEGRODIFFERENTIAL EVOLUTION EQUATIONS IN BANACH SPACES

  • Balachandran, Krishnan;Park, Dong-Gun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We prove the local existence of classical solutions of quasi-linear integrodifferential equations in Banach spaces. The results are obtained by using fractional powers of operators and the Schauder fixed-point theorem. An example is provided to illustrate the theory.