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SOLVABILITY OF OVERDETERMINED PDE SYSTEMS
THAT ADMIT A COMPLETE PROLONGATION AND
SOME LOCAL PROBLEMS IN CR GEOMETRY

CHONG-KYU HAN

ABSTRACT. We study the existence of solutions for overdetermined
PDE systems that admit prolongation to a complete system. We
reduce the problem to a Pfaffian system on a submanifold of the
jet space of unknown functions and then express the integrability
conditions in terms of the coefficients of the original system. As
possible applications we present some local problems in CR ge-
ometry: determining the CR embeddibility into spheres and the
existence of infinitesimal CR automorphisms.

0. Introduction

Let v = (u!,...,u?) be a system of real-valued functions of inde-
pendent variables z = (z!,...,zP). We consider a system of partial
differential equations of order m:

(2.1) Ax(z,u™)y=0, A=1,...,%,

where 4™ denotes the partial derivatives of u of order up to m and
each A is a smooth (C*°) function in the arguments. We assume (2.1)
is over-determined, that is, £ > q.

Generically, after differentiating (2.1) sufficiently many times one
can solve for all the partial derivatives of u of a certain order, say k,
as smooth functions in (z,u*~1)). This is the case where the non-
degeneracy condition of the implicit function theorem holds when we
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solve the derivatives of (2.1) for all the partial derivatives of u of order
k as

(2.2) u§ = Hit(z,u®),

for all @ = 1,... ,q, and for all multi-indices K with |K| = k. (2.2) is
called prolongation of (2.1) to a complete system of order & (cf. [8]).
We also say that (2.1) admits prolongation to a complete system (2.2)
of order k. If this is the case (2.1) is called a system of finite type.
Recently, K. Yamaguchi and T. Yatsui ([20]) studied the geometry of
the plane field defined by (2.2) in the space of the (k — 1)-jets from the
viewpoint of Tanaka’s theory of graded Lie algebra. In the present paper
we regard (2.2) as a Pfaffian system in a submanifold S of (k — 1)-th
jet space of u and investigate the existence of solutions by a process of
repeated application of the Frobenius theorem. This paper consists of
the following sections:

1. Pfaffian system with independence condition.
2. Solvability of over-determined PDE systems of finite type.
3. Some local problems in CR geometry.

§1. Pfaffian system with independence condition

In this section we review some of the classical existence theory for the
exterior differential systems. For the details we refer to [1] and [6].
Let M be a smooth manifold of dimension n. Let
6L,...,0°%w,. .. WP, s+p<nm

be smooth 1-forms that are linearly independent. We are concerned with
the problem of finding a submanifold of dimension p on which

(1.1) =0, a=1,...,s (Pfaffian system)
and
(1.2) Q:=w'A---AwP #0 (independence condition).

A submanifold N of M on which (1.1) holds is called an integral
manifold. On an integral manifold N we have 8¢ = 0, which implies
that df* = 0 for each o = 1,... ,s. We want to construct a sequence of
integral manifolds

{z}=Nc N'c...c NP"' C N7,

so that (1.2) holds on NP. Foreach ¢ = 1,...,p—1, N? may be obtained
by integrating the possible tangent spaces that we define as follows:
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DEFINITION 1.1. Let G4(M) be the Grassmann bundle of g-dimen-
sional planes tangent to M. E € G4(M) is called a g-dimensional inte-
gral element of (1.1) if

(1.3) 0> =0, d§*=0

on E. By V, we denote the set of all g-dimensional integral elements,
forg=1,...,p—1 and by V,, the set of p-dimensional integral elements
on which 2 # 0.

Now let Z be the ideal generated by 6%,d8%, a=1,...,s of the ring
of differential forms on M and for each integer ¢ = 0,1,..., let Z7 be
the submodule of 7 consisting of ¢g-forms. Given an integral element
E? € V, with a basis {e1,...,e,} for E? its polar equations are linear
equations for the subspace of all v € T,, M such that

(p(z), e1A---ANegAv)=0, VoeIrtl
This is the subspace of T*M
{es A Negap: ¢ € T},

A p-dimensional integral element E? is said to admit a regular flag if
there exists a sequence of integral elements

(0)=E°CcE'cC-..C EP

where each E9, ¢ =0,1,...,p is a smooth point of V;, and polar equa-
tions are of constant rank. We have

THEOREM 1.2 (CARTAN-KAHLER). Suppose that M is an analytic
(C*) manifold and that each 1-form 0%, w* in (1.1)-(1.2) is C*. Suppose
further that an integral element (z, E) € V,, admits a regular flag

(O)=E°CcE'Cc---CEP=E.
Then there exists a (C¥) integral manifold N passing through x with
T,N =FE.

The proof is a repeated application of the Cauchy-Kowalewski theo-
rem to construct a sequence of integral manifolds: we construct N1
from N? by solving a determined PDE system of Cauchy-Kowalewski
type.
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(1.1)-(1.2) are said to be involutive if each (z,E) € V, admits a
regular flag. Given a Pfaffian system (1.1) with independence condition
(1.2) on a manifold M, the existence of solutions can be shown by the
following two processes:

i) reduction of the problem to a submanifold M’ C M,

ii) prolongation to an involutive system.

Let M’ be the image of the projection 7 : V,, — M. We assume that
M’ is a manifold. If M’ # M an integral manifold must lie in M’, so we
set

Vy:={(z,E)eV,: ECT,M'}.

Let M" be the image of w: V,; — M'. If M" # M’, let
V) =={(z,E) eV, : ECT,M"}.

Eventually, we arrive at either empty set or else at M with Vp - M
surjective.

Now assume V, — M is surjective. The first prolongation of the
Pfaffian system (1.1)-(1.2) is the restriction to M) := V,, C G,(M) of
the canonical Pfaffian system on Gp,(M), which is given in terms of local

coordinates as follows: let z',... ,2P,y',... ,y™ P be local coordinates
of M with dz' A--- AdaP # 0 on E € Gp(M). Let dy* =" _, z5dx?,

on E. Then zj are fibre coordinates of G;,(M) and the canonical system

1S
P

dy® — 2 zydz’.

p=1

Now we complete {0, ... ,6° w!,... ,wP} to a coframe of M by choosing
additional 1-forms 7',... ,n". Any element (z, E) € G,(M) for which
w! A -+ AwP # 0 has equation

0% = mjw?, 7°={w", summation convention for p=1,...,p,

where mg, £5 are local fibre coordinates. Then the canonical Pfaffian

system with independence condition on G,(M) is

6% — mf,‘w” = (0 summation convention

7€ — Z;w" =0 summation convention

O:=w'A AWl #0.
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Set ) .
do® = Ea‘ggnﬁ Al + be,m Aw? + Ecng” Aw®
summation convention, mod 8,

where a and c are skew symmetric. Then on an open subset of G,(M)
on which Q # 0 V, is given by 8% = 0, and df* = 0, which is equivalent
to

mp =0, ag(fils — Lo l) + (b, b, — b,L) + oy =0,

(1.4) . .
summation convention

Ya=1,...,s, Vpo=q,...,p.
(1.4) defines locally M(Y) = V,, C G(M). Then the first prolongation
of (1.1)-(1.2) on MM is

=0, a=1,...,s
mt—Lw’ =0, e=1,...,r
Q #0.

A basic fact in the theory of prolongation is that the integral manifolds
of (1.1)-(1.2) corresponds one-to-one to the integral manifolds of the first
prolongation. Inductively, we define the n-th prolongation of (1) by the
first prolongation of the (n — 1)-th prolongation. In analytic category
one can determine the existence of general solutions by a finite number
of prolongations thanks to the following theorem:

THEOREM 1.3 (CARTAN-KURANISHI). Given a Pfaffian system (1.1)-
(1.2) on M there exists a non-negative integer qo such that the g-th (q >
do) prolongations are involutive under a generic regularity assumption.

In this paper we study C*° systems for the special case where
g, ... ,60%wh, ... WP

form a coframe for M, that is, the case s + p = n. In this case the
following are equivalent:

i) involutivity,

ii) there exists an integral element through each z € M,

iii) 7 : V, — M is surjective,

iv) d6* =0, mod 6 (Frobenius condition).
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§2. Local solvability of generic over-determined PDE sys-
tems

In this section we study the existence of solutions for the over-deter-
mined PDE systems that admit prolongation to a complete system. We
work in C'*° category.

Let u = (u, ... ,u?) be a system of real-valued functions of indepen-
dent variables x = (z!,... ,zP). Consider a system of partial differential

equations of order m
(2.1) Ax(z,u™) =0, A=1,...,¢,

where u(™) denotes all the partial derivatives of u of order up to m. We
assume that (2.1) is over-determined, that is, £ > ¢. A multi-index of

order 7 is an unordered r-tuple of integers J = (j1,...,jr) with 1 <
js < p. The order of a multi-index J is denoted by |J|. By u we denote
the |J|-th order partial derivative of u® with respect to z7*,... , z/1J1,

For a smooth function A(z,u(™), the total derivative of A with respect
to x' is the function in the arguments (z,u(™+1) defined by the chain

rule as in [15]:
8A o
i 81;1 Z Z J7‘7

a=1]J|<m

where Ji dentes the multi-index (j1,...,4,%). Compatibility condi-
tions are those equations obtained from (2.1) by differentiation and
algebraic operations, that is, the ideal generated by A and the total
derivatives of A. (2.1) is said to admit a complete prolongation if the
compatibility conditions determine all the partial derivatives of u of a
sufficiently high order, say k(k > m), as functions of derivatives of lower
order, namely,

(2.2) u$ = HE (z,u*~D),

for all multi-index K with |K| = k, and for all &« = 1,...,q. This is
the case where there exists a system of compatibility conditions that
satisfies the non-degeneracy hypothesis of the implicit function theorem
so that the system is solvable for all ux’s with |K| = k in terms of lower
order derivatives. (2.2) is called a complete system of order k. (2.1) is
said to admit prolongation to a complete system (2. 2) Now we consider

the ring of smooth functions in the arguments (z,u®,uf,ug;,...). For
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each non-negative integer r let A" be the algebraic ideal generated
by A = (Ay,...,4;) and the total derivatives of A up to order r,
where A = (A4,...,A) as in (2.1). Suppose that the complete system
(2.2) is obtained from A(™. Let J*~1(X,U) be the space of (k — 1)-th
jets (z,u*~Y). Let S ¢ J*~Y(X,U) be the common zero set of those
functions in the arguments (x,u*~1) that are elements of A, We
assume S is a smooth manifold on which dz A---AdzP # 0. Then there
exist disjoint sets of indices

A={(a,1)} and B:={(,J)},

where a,b € {1,...,¢}, I and J are multi-indices of order < k — 1 so
that S is the graph
(2.3) uf = ®%(z,u%), forall (b,J) € B.

We take (z,u% : (a,I) € A), as local coordinates of S. Observe that if
u = u(z) is a solution of (2.1) then its (k— 1)-th jet graph (z, u(*~1)(z))
is contained in S and for each (a,I) € A, we have

ag b u(z)dzt for)l| < k-2,
dut(z) = =t h o
i=1 Hfi(z,u ydz*  for |I| =k —1,
where H'’s are as in (2.2). Substituting (2.3) for all u% with (b, J) € B
we obtain

duf(@) = 3 Ui (w, uf (@)de’,
i=1
where all the indices (o, L) are in A. Thus on S we define independent
1-forms

V4
(2.4) ¢ = duf — Z\Il‘}z(x,u% (o, L) € A)da?,

i=1
for all (a,I) € A. Then the smooth solutions of (2.1) are in one-to-
one correspondence with the smooth integral manifolds of the Pfaffian
system (2.4). Let 8 = {6% : (a,I) € A}. We set

o7 =Y Thi(z,u5 : (o, J) € A)da' Ada?,  mod 6.
i<j
Ifallof T := {T},; : (a,I) € A} are identically zero then by the Frobenius
theorem § is foliated by integral manifolds. Otherwise, we consider (2.4)
restricted to a subset S’ C S, where S’ is the common zero set of TF; ;.
We assume that S’ is a smooth manifold on which dz' A -+ A dzP # 0.

Making use of the following theorem we further check the integrability
of (2.4) on &'.
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THEOREM 2.1. Let M be a smooth manifold of dimension n. Let
6 := (6%,...,6°) be aset of independent 1-forms on M and D := (6)* be
the (n—s) dimensional plane field annihilated by 8. Suppose that N is a
submanifold of M of dimension n—r defined by Ty = --- = T, = 0, where
T, are smooth real-valued functions of M such that dTy A---ANdT,.- # 0
on N. Then the following are equivalent:

(2) D is tangent to N.

(#9) dT; =0, mod 6',...,0°on N,1<j<r,

(431) 1*@',... ,i*0° have rank s—r, where i : N — M is the inclusion.

Proof. (i) < (ii) Let P € N. Then,
Dp is tangent to N,

& (0,...,05L c (dTy,... ,dT, )t at P,

sdl; e (0,...,0°) at Pforeachi=1,...,r,

& dT; =0, mod 6 at P.

(#) © (i4i) Assuming (ii), we have dT; = > ;_, ajx0° on N, j =
1,...,r. Since dT1,...,dT, are linearly independent on N, the matrix
(a;x) has rank 7. Then we have

8
0=14"dT; =Y aui0, 1<j<r.
k=1

This means that i*0%,... ,i*8° have rank no greater than k — r. Since
N is of dimension n — r, i*8',...,i*@° have rank no less than k — r.
Therefore we obtain (i3).

Conversely, (i) implies that (after suitable index changes) i*6*~ "+
= Y i1 by;i*67, 1 < I < r for some functions on N. Then ¢*(6°~"*+ —
PRyt b;67) =0, 1 <1 <r. Since dTi,... ,dT, are linearly independent
on N, we have 95"+ — Z‘;;; b;67 = Zj ¢;dTj, 1 <1< ron N, where
c;; are functions on N and the matrix (c;;) is nonsingular. Therefore we
can solve d7T} in terms of 6%’s. O

Thus &' is foliated by integral manifolds if d77;; = 0 mod 6 on &'
Otherwise, we repeat the same argument, eventually to reach a sub-
manifold S of dimension < p. If § is of dimension p then the Frobenius
integrability is simply

i"0 =0,

where i : § — & is the inclusion map. If the dimension of & is less than
p, no solution exists.
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EXAMPLE 2.2.
{ Ug = a(:v,y,u)

uy = bz, y, u).

This is a complete system of first order for an unknown function u
of two variables (x,y). In this case S is the 0-th jet space of u, that is,
S = {(z,y,4)} =R’ and

0 = du — adx — bdy.
Then df = T'dx N dy, mod 6, where
T =a, + ayb— by — bya.

If T is identically zero then there exists a solution through any point
(%0, Y0,ug). If T is a function of (z,y) and not identically equal to zero
then dz A dy = 0 on T = 0 and therefore, there is no solution.

As a special case of Example 2.2 we consider the following example.

ExaMPLE 2.3.

(2.5) { ug = alz,y) + u?

uy = 1.

If there exists a solution u its graph must be contained in T := a, +

2u = 0. This implies that v = —%ay, which is indeed a solution if and
only if it satisfies the differential equations, namely,
1 1. 2
— 50y =a+ 30
- (e motie
—50yy = 1.

We see that (2.6) is equivalent to
dTAN8=0, onT =0.

EXAMPLE 2.4.
(2.7) { ety =1
Uyy = a(Z,y, U, Ug).

Differentiating the first equation of (2.7) with respect to z and y,
respectively, and solving these with the second equation of (2.7) for all
the second order partial derivatives of u we obtain

Uge = Qy, Ugy = —Q, Uyy = Q.
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Introduce new variables p and ¢ for u, and u,;, respectively, and consider
the submanifold S of dimension 4 given by p+¢ = 1 in the first jet space
JY(R%,R) = {(z,y,u,p,q)} The first jet graph of a solution is an integral
manifold that is contained in S of the Pfaffian differential system

0o := du — pdx — qdy
01 :=dp — adz + ady
02 := dq + adz — ady.

On S we have 05 = —#;. Thus our problem is finding integral mani-
folds of the following Pfaffian system on S:

9. { 6o := du — pdz — (1 — p)dy
"\ 6, :=dp — adx + ady,

with the independence condition dz A dy # 0. To check the Frobenius
integrability condition we compute df modulo §. We have

d6, = Tda A dy,
where
T(z,y,u,p) = az + aup + apa + ay + ay(1 — p) — apa.

If T vanishes identically on S then S is foliated by 1-jet graph of so-
lutions, thus we have 2-parameter family of solutions. Otherwise, we
consider a submanifold &’ of S given by T' = 0. &’ is of dimension 3.
Generically S’ is a submanifold of S of the form p = p(z, y,u). If

(2.8) dT =0, mod{fy,6:}, on &’

&' is foliated by 1-jet graph of solutions, thus we have 1-parameter family
of solutions. By Theorem 2.1, (2.8) is equivalent to the pull-back to &’
of 6y and that of 8; are linearly dependent everywhere. If (2.8) does not
hold we let

dT = T'dx Ady, mod {6,601}

Let S” be the submanifold of 8’ given by T = 0. 8" is of dimension 2.
8" is graph of a solution if and only if

(2.9) dT' =0, mod by,6;.

(2.9) is a necessary and sufficient condition for a solution to exist.
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§3. Some local problems in CR geometry

In this section we propose problems of determining the CR embeddi-
bility into spheres and the existence of infinitesimal CR automorphisms.
We recall the basic definitions first: let M be a differentiable manifold
of dimension 2n + 1. A CR structure of hypersurface type on M is a
subbundle V of the complexified tangent bundle Tt M having the follow-
ing properties :

i) each fiber is of complex dimension n,

ii) YNV = {0},

iii) [V, V] C V (integrability).

Given a CR structure V the Levi form £ is defined by

E(Ll,Lg) = \/——1[L1,EQ], mod (V-I‘l_))

L is a hermitian form on V with values in TcM/(V + V). M is said
to be strictly pseudoconvex if £ is definite. A real hypersurface in a
complex manifold has natural CR structure induced from the complex
structure of the ambient space. A complex valued function f is called
a CR function if f is annihilated by V. Let {Li,...,L,} be a set of
complex vector fields that generates V. Then f is a CR function if and
only if

(3.1)

Lif=0, i=1,...,n (tangential Cauchy-Riemann equations).

A system of CR functions (fi1,..., foy1) with dfi A+ Adfp41 #0is a
CR immersion into C"*1,

Let (N,V’) be a CR manifold of dimension 2N + 1, N > n, with
the CR structure bundle V'. A mapping F' : M — M’ is called a CR
mapping if F' preserves the CR structure, that is,

EFYycV.

A CR manifold of dimension 2N — 1 embedded in a CR manifold of
dimension 2N + 1 is called a CR hypersurface.

Webster proved in [19] that every CR hypersurface in the sphere
S2N+1 (N > 4) is rigid. This implies that if M is a CR hypersurface
in $2N*+1 then a CR mapping of M into S?N+! is determined by its
finite jet at a point. That is, there exists a non-negative integer k so
that if two CR mappings f and g have the same k-jet at a point then
f = g. Our question is whether the (k+ 1)-th jet of embeddings depends
continuously on the k-th jet:
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PrOBLEM 3.1. Let M be a smooth CR manifold of dimension 2N —1,
(N > 4). A mapping F = (f1,...,f¥*Y) : M — $2N+! js 4 CR
mapping if F satisfies (3.1) withi=1,... ,N —1 and

(32) flf—'l 4. +fN+1fN+1 =1.

Does the system (3.1)-(3.2) admit prolongation to a complete system
of finite order?

In [7] the author constructed a complete system for CR mappings
of a strongly pseudo-convex CR manifold into a CR manifold of higher
dimension under certain assumptions. Problem 3.1 asks whether one
can remove the generic assumptions if the CR mapping is an embedding
into a sphere as a hypersurface.

PROBLEM 3.2 (CR EMBEDDIBILITY INTO SPHERES). Discuss the ex-
istence of solutions for the complete system constructed in Problem 3.1.
Express the Frobenius integrability conditions in terms of the Chern-
Moser invariants of M.

[11] and [14] are the results for some special cases.

A real vector field X on a CR manifold (M, V) is an infinitesimal CR
automorphism if the flow maps ¢; of X are local CR diffeomorphisms
for each t with |t| < e. A smooth vector field X is an infinitesimal CR
automorphism if and only if the Lie derivative of a section L of V with
respect to X is again a section of V, that is, [X, L] € V. We set

(3.3) [X,L]) =o!L;, (summation convention),

for some functions o foreachi=1,... ,n.
2 3 b]

THEOREM 3.3. Let M?"+! be a C* CR manifold of nondegenerate
Levi form. Then the defining equation (3.3) of the infinitesimal CR
automorphisms admits prolongation to a complete system of order 3.
Therefore, a C? infinitesimal CR automorphism is in fact C*. More-
over, the set of infinitesimal CR automorphisms of M forms a finite
dimensional Lie algebra.

This is a well known fact in the theory of CR structures due to Cartan,
Tanaka [17] and Chern-Moser [5]. A direct proof is found in [8].
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PROBLEM 3.4 (EXISTENCE OF INFINITESIMAL CRAUTOMORPHISMS).
Express the Frobenius integrability of the complete system for the infin-
itesimal CR automorphisms in terms of the Chern-Moser invariants.

For the cases of three dimensional CR manifolds of non-degenerate
Levi form H. D. Lee [13] proved the following: if the manifold is the hy-
perquadric then there exists 8-parameter family of CR automorphisms.
Otherwise, there exists at most 3-dimensional CR automorphisms.
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