• 제목/요약/키워드: Local cohomology

검색결과 47건 처리시간 0.02초

ON THE COHOMOLOGICAL DIMENSION OF FINITELY GENERATED MODULES

  • Bahmanpour, Kamal;Samani, Masoud Seidali
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.311-317
    • /
    • 2018
  • Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.

A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS

  • Bagheriyeh, Iraj;Bahmanpour, Kamal;Ghasemi, Ghader
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.275-280
    • /
    • 2020
  • Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.

AN ABELIAN CATEGORY OF WEAKLY COFINITE MODULES

  • Gholamreza Pirmohammadi
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.273-280
    • /
    • 2024
  • Let I be an ideal of a commutative Noetherian semi-local ring R and M be an R-module. It is shown that if dim M ≤ 2 and SuppR M ⊆ V (I), then M is I-weakly cofinite if (and only if) the R-modules HomR(R/I, M) and Ext1R(R/I, M) are weakly Laskerian. As a consequence of this result, it is shown that the category of all I-weakly cofinite modules X with dim X ≤ 2, forms an Abelian subcategory of the category of all R-modules. Finally, it is shown that if dim R/I ≤ 2, then for each pair of finitely generated R-modules M and N and each pair of the integers i, j ≥ 0, the R-modules TorRi(N, HjI(M)) and ExtiR(N, HjI(M)) are I-weakly cofinite.

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.167-177
    • /
    • 2020
  • Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

CASTELNOUVO-MUMFORD REGULARITY OF GRADED MODULES HAVING A LINEAR FREE PRESENTATION

  • Ahn, Jeaman
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.777-787
    • /
    • 2009
  • In this paper we investigate the upper bound on the Castelnuovo-Mumford regularity of a graded module with linear free presentation. Let M be a finitely generated graded module over a polynomial ring R with zero dimensional support. We prove that if M is generated by elements of degree $d{\geq}0$ with a linear free presentation $$\bigoplus^p{R}(-d-1)\longrightarrow^{\phi}\bigoplus^q{R}(-d){\longrightarrow}M{\longrightarrow}0$$, then the Castelnuovo-Mumford regularity of M is at most d+q-1. As an important application, we can prove vector bundle technique, which was used in [11], [13], [17] as a tool for obtaining several remarkable results.

  • PDF

Existence of subpolynomial algebras in $H^*(BG,Z/p)$

  • Lee, Hyang-Sook;Shin, Dong-Sun
    • 대한수학회보
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 1997
  • Let G be a finiteg oroup. We denote BG a classifying space of G, which a contractible universal principal G bundle EG. The stable type of BG does not determine G up to isomorphism. A simple example [due to N. Minami]is given by $Q_{4p} \times Z/2$ and $D_{2p} \times Z/4$ where ps is an odd prime, $Q_{4p} is the generalized quarternion group of order 4p and $D_{2p}$ is the dihedral group of order 2p. However the paper [6] gives us a necessary and sufficient condition for $BG_1$ and $BG_2$ to be stably equivalent localized et pp. The local stable type of BG depends on the conjegacy classes of homomorphisms from the p-groups Q into G. This classification theorem simplifies if G has a normal sylow p-subgroup. Then the stable homotopy type depends on the Weyl group of the sylow p-subgroup.

  • PDF