• Title/Summary/Keyword: Local Solution

Search Result 1,347, Processing Time 0.031 seconds

A Causal-Forecasting Model using Guided Genetic Algorithm in Continuous Manufacturing Process (연속생산공정에서의 유도형 유전알고리즘을 이용한 인과형 예측모델에 관한 연구)

  • 정호상;정봉주
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.39-54
    • /
    • 2000
  • This paper presents a causal forecasting model using guided genetic algorithm in continuous manufacturing process. The guide genetic algorithm(GGA) is an extended genetic algorithm(GA) using penalty function and population diversity index to increase forecasting accuracy. GGA adds to the canonical GA the concept of a penalty function to avoid selecting the unproductive chromosomes and to make a proper searching direction. Also, GGA modifies the current population using the similarity of chromosomes to avoid falling into the trap of local optimal solution. For investigation GGA performance, we used a set of real data that was collected in local glass melting processes, and experimental results show the proposed model results in the better forecasting accuracy than linear regression model and canonical GA.

  • PDF

타부탐색(Tabu Search)의 확장모델을 이용한 '외판원 문제(Traveling Salesman Problem)' 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.135-138
    • /
    • 1996
  • In solving the Travel Salesman Problem(TSP), we easily reach local optimal solutions with the existing methods such as TWO-OPT, THREE-OPT, and Lin-Kernighen. Tabu search, as a meta heuristic, is a good mechanism to get an optimal or a near optimal solution escaping from the local optimal. By utilizing AI concepts, tabu search continues to search for improved solutions. In this study, we focus on developing a new neighborhood structure that maintains the feasibility of the tours created by exchange operations in TSP. Intelligent methods are discussed, which keeps feasible tour routes even after exchanging several edges continuously. An extended tabu search model, performing cycle detection and diversification with memory structure, is applied to TSP. The model uses effectively the information gathered during the search process. Finally, the results of tabu search and simulated annealing are compared based on the TSP problems in the prior literatures.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

2-D Magnetostatic Field Analysis Using Adaptive Boundary Element Method (적응 경계요소법을 이용한 2형원 정자계 해석)

  • 고창섭;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.243-249
    • /
    • 1991
  • Adaptive mesh refinement scheme is incorporated with the boundary element analysis in order to get accurate solution with relatively fewer unnowns for magnetostatic field analysis. A new andsimple posteriori local error estimate is also presented. The local error is defined as an integraktion over the element of the difference between solutions from quadratic interpolation functions and linear interpolation functions and is used as the criterion for mesh refinement. Case study with a singular point reveals that adaptive meshes are more efficient in accuracy of solutions than uniform meshs generated by dividing al the elements evenly. The adaptive meshes give much better rate of convergence in global errors than the uniform meshes.

  • PDF

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.

The Perfectly Matched Layer applied to the Split-Step Pade PE Solver in an Ocean Waveguide

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.131-136
    • /
    • 2006
  • The PML developed for the radio wave propagation is a powerful numerical domain truncation technique. We perform an analytic study on the reflection from the PML inserted in the ocean bottom. In the ocean bottom, we show the PML to have the improved performance but simultaneously the degeneration below the critical angle of the fast ocean bottom. The degeneration of the PML can be simply relaxed by stretching the thickness of the PML or putting the attenuation coefficient to the ocean bottom. As a better solution, we propose the improved truncation technique based on the PML and the non-local boundary condition. Finally, we apply the PML to the acoustic wave propagation using split-step Pade PE solver. For the problems of the ocean waveguide, the numerical efficiency of the PML is examined and the usefulness of the PML is confirmed.

Asynchronous Linear-Pipeline Dynamics and Its Application to Efficient Buffer Allocation Algorithm (비동기식 선형 파이프라인의 성능 특성 및 이를 이용한 효율적 버퍼 할당 알고리즘)

  • 이정근;김의석;이동익
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.109-112
    • /
    • 2002
  • This paper presents relationship between the dynamic behavior of an asynchronous linear pipeline (ALP) and the performance of the ALP as buffers are allocated. Then the relationship is used in order to characterize a local optimum situation on the buffer design space of the ALP. Using the characterization we propose an efficient algorithm optimizing buffer allocation on an ALP in order to achieve its average case performance. Without the loss of optimality, our algorithm works in linear time complexity so it achieves fast buffer-configuration optimization. This paper makes two contributions. First, it describes relationship between the performance characteristics of an ALP and a local optimum on the buffer design space of the ALP. Second, it devises a buffer allocation algorithm finding an optimum solution in linear time complexity.

  • PDF

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames (대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구)

  • 정대헌;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method (P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF