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Abstract

The PML developed for the radio wave propagation is a powerful numerical domain truncation technique. We perform
an analytic study on the reflection from the PML inserted in the ocean bottom. In the ocean bottom, we show the
PML to have the improved performance but simultaneously the degeneration below the critical angle of the fast ocean
bottom. The degeneration of the PML can be simply relaxed by stretching the thickness of the PML or putting the
attenuation coefficient to the ocean bottom, As a better solution, we propose the improved truncation technique based
on the PML and the non-local boundary condition. Finally, we apply the PML to the acoustic wave propagation using
split-step Padé PE solver. For the problems of the ocean waveguide, the numerical efficiency of the PML is examined
and the usefulness of the PML is confirmed.
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|. Introduction

The Perfectly matched layer (PML) has been introduced by
Berenger [1] as an absorbing boundary condition (ABC) for the
electroﬁagnetic waves. The PML theoretically exhibits the zero
reflection at the interface between the free space and PML for all
frequencies and all grazing angles [2]. But, when performing the
numerical calculation, the PML cannot avoid the artificial
reflection resulting from two causes. One is the reflection caused
by the finiteness of the numerical domain and the other is the
discretization-induced reflection. For many physical problems,
these unwanted reflections can be reduced to an insignificant
level by the proper choice of the PML coefficient and thickness.
In order to act as an excellent absorber, the PML only need to be
the thickness of 10~40 grid points [3-6].

In spite of the efficiency of the PML, the PML has not been
usually recommended as the ABC for the long range propagation
problem [6]. This is because the PML is degenerated as the
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direction of the propagation wave is close to the low grazing
angle region [5-8). In that case, the magnitude of the artificial
reflection has the value close to 1 and the PML fails to absorb
the wave energy. But, the above statement for the degeneration of
the PML isn't clear for the PML inserted to the ocean bottom.
Since the ocean bottom plays the role of filtering the high
grazing angle rays, the waves transmitted from the ocean bottom
to the PML may be the propagation waves or the evanescent
waves [9]. This twofold behavior of the acoustic wave can affect
the efficiency of the PML, different from that of the free space
PML. Therefore, the general performance study is required for
the PML inserted in the ocean bottom.

In this paper, we analytically study the reflection from the PML
inserted in the ocean bottom. The role of the ocean bottom on the
PML performance is examined. Especially, we propose the
improved truncation fechniques based on the PML and the
non-local boundary condition (NLBC) [10-12]. Finally, the PML is
applied to SNUPE (Seoul National University Parabolic Equation),
the stability improved split-step Padé PE solver [13). For occan
waveguide problems, the numerical proof of the PML is performed.
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Il. Reflection from the Ocean Bottom Plus
PML

In the 2D coordinate (7.2} for the parabolic equation, the PML
can be expressed in terms of the complex coordinate-stretching

variables z'as

* jz ' .
z =z+= |o(z)dz
a)c-,[ =) (D

where @ is the angular frequency and o(z) is the
depth-varying PML coefficient.

The reflection coefficient between the free space and the PML
with a finite thickness and the pressure release condition at the
toewer boundary of the PML is presented as

R=-¢™Pe ©¢ @

with the PML thickness of &. Here, the vertical wavenumber
k =ksin€ with the grazing angle ¢ and the medium
wavenumber % (3]

Equation (2) is itself the artificial reflection. The first term of
equation (2) is for the phase shift and the second term represents
the attenuation by the PML. The minus sign is caused by the
pressure release boundary condition. Specifically, we observe that
the reflection coefficient is close to 1 when 8- 0.

Assuming the environment of Fig. 1 and the plane wave, the
total reflection from the general ocean bottom is derived as

below.
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Fig, 1, Schematic diagram of the PML inserted to the simple two
ocean bottom,
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with the local reflection coefficient Ry

is assumed as a known parameter. And,

L%| o %,
#(z)=8.") and p&|_, p, o |.. are used as the
continuity relation between layers. Here, #(z} means the wave
potential.

If the numerical domain is infinite and the PML is absent, the
true reflection from the ocean bottom is Re. Thus, the artificial
reflection is derived as difference of the equation (2) and Ry as

below,
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with the sound speed ¢ and the medium wavenumber X,

Equation (4) can explain the effect of the acoustic wave
filtered by the ocean bottom. In underwater acoustics, equation
(4) is more appropriate than equation (2) since it reflects the real
ocean environment.

In equation (4), when ¢ -0, AR — 0. This is caused by the
behavior of &,. Physically, the acoustic waves propagated at the
low grazing angle are intercepted by the ocean bottom and the
wave energy can hardly transmit in the ocean bottom. As a
result, the PML with the ocean bottom shows the improved
performance in the low grazing angle region. But, this statement
isn’t true for the fast ocean bottom. For the fast ocean bottom,
the acoustic wave below the critical angle becomes evanescent

waves and R’ of equation (4) is expressed as
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In evanescent region, the property of two exponential terms of
Re™ s respectively exchanged as the upper equation. Since
the attenuation term of the PML is changed to the phase term,
the effect of the PML naturally disappeats. Instead, the first
exponential term of equation (5) behaves like the new absorber,
Although this new absorber may show excellent performance as



the grazing angle becomes lower and (6+Mand ¢ /¢, is larger,
the total ability of the ABC is degenerated when compared to
that of the PML. Especially, the worst degeneration happens in
the critical angle. When 7iis zero, the artificial reflection
becomes -2 where the total reflection is -1 and the true reflection
is 1. In this case, all exponential terms of equation (5) becomes
close to 1 and lose the ability of the absorber perfectly.
Undoubtedly, the degeneration of the low grazing angle region
cancels out each other when (5+54) or ¢ /c, is larger. But, it is
inevitable that the singular error happens in the critical angle.

IIl. Improved Performance of the PML in
the Ocean Bottom

The degeneration of the PML for the fast ocean bottom can be
simply compensated by stretching the thickness (5+4) or putting
the attenuation factor for the ocean bottom.

In Fig. 2, we plot the behavior of the reflection as the
thickness increases. To simplify the problem, % is assumed to
the zero and the variation by only the & will be observed. Ry is
set to -1, the pressure-release condition. The sound speed of the
layer 0 is 1500m/s and that of layer 1 is 1600 m/s. The
density is set to 10004g/n’for all layers. The thickness & is
considered as multiples of the wavelength and
S=nc;/f=nd (n=1234) for the example of Fig. 2. The PML
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Fig, 2. The effect of the thickness & of the on the artificial reflection
{solid line: true reflection coefficient, dash line: total reflection
coefficient, dotted line: astificial reflection coefficient),

positive number [5]. To suppress the discretization-induced
teflection, we make €. -Azhave the magnitude order smaller than
0(10*)where Az ~ 1/15 for all examples [7].

In Fig. 2, in spite of being a fast ocean bottom, we observe
that the antificial reflection is reduced as the thickness increases.
And the approximately zero reflections for all angles is obtained
with the thickness over 34 although the constant singular error
exists in the critical angle. We emphasize that the zero reflection
has never been obtained with the traditional ABCs for same case
[4)F12].

As a second example, we show the improved performance by
putting attenuation in the ocean bottom. The values used in the
second example are same ag the first example except fixing the
thickness to 3. If the attenuation exists in layer 1, the
transmitted angle & is always a complex number. We consider
0, =0,+ 6 where 9 and @ are real. Then, the vertical

wavenumber %) of layer 1 can be approximately transposed to

jl(irlrl (
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&
sinh 8, with the attenuation factor € in the

evanescent region. Using this relation, R, is arranged as
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Equation (6) explains .the effect of the atteruation factor.
Although & = 0+0Jin the critical angle, the exponential term

for the attenuation still remains and approach to a small number.
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Fig, 3. The effect of the attenuation factor on the artificial reflection

{solid line: true reflection coefficient, dash fine: total reflection
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So, we know that the attenuation factor suppresses the sudden
degeneration of the ability of the absorber near the critical angle
for the fast ocean bottom. In Fig. 3, we observe the singular
error near the critical angle to be much smaller than in Fig. 2.
The singular emor in the critical angle is also reduced.

Finally, we will show the effect of the lower boundary of the
PML expressed as . If we impose the low-order NLBC
(Standard PE) to the lower boundary of the PML, Rx is
expressed in the frequency-wavenumber domain as below [11].

Rz J1+cosé, -2
» Jl+cosé, +2

@

Then, R, is rearranged as
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J+cosg, +42 8

In equation (8), we can easily confirmn R —0 when
6 —>0+0/ Although 6 =»0+&j, Ry~0 and R =90 since
€ is usually a small number less than 1 in the ocean
environment. Although we use the lower-order PE operator to the
lower boundary condition, the artificial reflection in evanescent
region is almost perfectly eliminated. This interesting result
indicates that more powerful truncation technique for al angles is
made by the combination of the PML and the low-order NLBC.
Naturally, the additional numerical cost will be required to
calculate the low order NLBC at the expense of the
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Fig. 4. The effect of the loworder NLBC (SPE) on the antificial
reflection (solid line: true reflection coefficient, dash line: total
reflection coefficient, dotted line: artificial reflection coefficient),
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combination. In Fig. 4, we plot the reflection considering the
NLBC. All values used in this example are equal to that of the
first example except the use of the NLBC. As shown in Fig. 4,
the maximum value of the artificial reflection has the order of

© 0(10™). The artificial reflection in the low grazing angle region

is reduced more as the thickness increases and in the high
grazing angle region is reduced more as the PML coefficient
increases. In the critical angle, the artificial reflection is always
zero because of the low-order NLBC.

IV. Numerical Modeling Using PE Solver

The acoustic parabolic equation applied to the PML is

formulated as below.

1 P a3, 1 )
& (1+ jo(z)/ @) & p(l+ jo(z)/ @) &

P _ -1+ \}nz(z)+ )p

o )]

We solve equation (9) using the routiné of SNUPE {13].

V. Numerical Examples

We will show two numerical examples in this section. First
example is Lloyd mirror problem. The frequency is S50Hz and the
source is located on the depth of 36m. The ocean sound speed
1500m/s and 1000kg/m’. These acoustic

properties are used for all examples. Fig. 5 shows the result for

and density are

Lioyd mirror problem. Although the PML thickness increases
from 5=1 t 05=421, the numerical solution doesn’t converge

Freq=50Hz, =11

" v

8 8 10 4 8 e 10
Fig. 5, Lloyd mirror problem: the transmission loss for the PML
thickness, The dotted line indicates the interface between the
real numerical domain and the PML,
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Fig, 6, Transmission loss for Lloyd mirror problem at the depth of 36m
for the thickness of the absorbing layer, {a) PML, {(b) Traditional
absorbing layer,
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Fig, 7. Pekeris waveguide: the transmission toss for the PML thickness,
The dotted line indicates the interface between the real
numerical domain and the PML,
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Fig, 8, Transmission loss for Pekeris waveguide at the depth of 36m
for the thickness of the absorbing layer. (a) PML, {b) Traditional
absorbing layer,

in the long range. Fig. 6 (2) shows the transmission loss at the
source depth for the PML thickness. The solution cannot be
stable. This is because the PML is naturally degenerated in the
long range of the free field space. This degeneration is
estimated from the equation (2). Fig. 6(b) is plotted to compare
the results of the PML and the traditional absorbing layer (TAL).
The thickness of the TAL is set equal to that of the PML and the
absorbing coefficient is varying from 0.04B/4 to 10.04B/4 for
the thickness of the absorbing layer. For the long range, the
result of the TAL describes more stable than that of the PML but
the solution is still inaccurate. _

In Second example, Pekeris environment is considered in order
to show the improved performance of the PML in ocean bottom.
The ocean depth is 100m and the source depth is equal to that of
first example. Bottom sound speed, bottom density and
attenuation is respectively 1800m/s, 1800kg/m’ and 0.54B/ 1.
The source frequency is 20Hz. In Fig. 7, we observe the wave
field is converged even to &=24. This is totally because of the
role of the ocean bottom and its attenuation. The performances of
the PML and the TAL are compared in Fig. 8, showing the
transmission loss at the source depth. We can see that the PML
is éuperior to the TAL.

V1. Summary

In order to apply the PML to the parabolic equation in an
ocean waveguide, we perform the reflection analysis for the PML
included in the ocean bottom. New analytic reflection coefficient
is derived and the efficiency of the PML is examined for the
ocean bottom. The PML obtains some gain for the soft ocean
bottom but is degenerated below the critical angle for the fast
ocean bottom. We show that this degeneration is resolved by
stretching the thickness of the layer, putting the attenuation factor
or using the low-order NLBC. Finally, we apply the PML to the
split-step Padé parabolic solver and validate the efficiency of the
PML in the ocean bottom through two examples.
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