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A new method for simulating voltage and current 
distributions in transmission lines is described.  It gives 
the time domain solution of the terminal voltage and 
current as well as their line distributions.  This is 
achieved by treating voltage and current distributions as 
distributed state variables (DSVs) and turning the 
transmission line equation into an ordinary differential 
equation. Thus the transmission line is treated like other 
lumped dynamic components, such as capacitors. Using 
backward differentiation formulae for time discretization, 
the DSV transmission line component is converted to a 
simple time domain companion model, from which its 
local truncation error can be derived. As the voltage and 
current distributions get more complicated with time, a 
new piecewise exponential with controllable accuracy is 
invented. A segmentation algorithm is also devised so that 
the line is dynamically bisected to guarantee that the total 
piecewise exponential error is a small fraction of the local 
truncation error. Using this approach, the user can see the 
line voltage and current at any point and time freely 
without explicitly segmenting the line before starting the 
simulation. 
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I. Introduction 

A transmission line, as shown in Fig. 1, is an important 
component found in both power and communication distribution 
networks. It also appears in electrical circuits in various forms 
such as microstrips, coaxial cables, and high-speed interconnects 
in integrated circuits. At low frequency, the line can be treated as 
being short circuited or replaced by lumped components. 
However, for high-frequency applications, such as high-voltage 
spike and high-speed communication, the line can have a 
significant effect on the dynamic of the circuit with which the 
line is connected. Hence, a transient simulation that treats a 
transmission line as a dynamic component must be developed. 
The dynamic equation is usually described by the telegraph 
equation [1], which consists of a set of linear partial differential 
equations comprising both temporal and spatial derivatives of 
line voltages and currents: 
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Such a formulation significantly differs from lumped 
components, that is, capacitor and inductor, which are described 
only by differential equations, such as ( )i C dv dt= or 

( )v L di dt= . Hence, the telegraph equation does not fit with 
the equation formulation procedure of conventional circuit 
simulators, such as Hspice [2], EMTP [3], and MultiSim [4]. 
Moreover, its frequency domain terminal characteristic is an 
irrational function of the complex frequency s. Thus, the line 
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Fig. 1. Transmission line model. 
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Fig. 2. Transmission line modeled as n segments of lumped
components. 
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terminals cannot be accurately modeled by a finite number of 
lumped components. An exact calculation of its transient 
response is impossible except for some special cases, such as 
R=0 and G=0 [1]. 

During the past three decades, various methods have been 
developed to approximate the dynamic of the transmission line 
to allow the transient solution of the transmission line circuit to 
be numerically computable. The methods can be classified 
according to the selected domain of approximation, namely, 
frequency or spatial approximation.  

The frequency approximation methods focus on 
approximating the terminal frequency responses of a 
transmission line with rational functions that has a finite number 
of poles. They are usually referred to as model order reduction 
(MOR) [5] methods. The simplest method of this class is the 
segmentation method, which replaces a transmission line with a 
large number (e.g. 100) of segments of lumped R, L, G, and C 
components as shown in Fig. 2. More efficient and accurate 
MOR methods have been proposed, such as PRIMA [6], [7] and 
DOMMEL [8], [9].    

Frequency approximation methods have been shown to 
reduce the complexity of computing the time domain 
companion model of a transmission line. However, once the 
approximation is carried out, the original telegraph equation is 
no longer used in the transient analysis. That is, the reduced 
model is determined a priori. Hence, even if the time 
discretization, that is, the backward differentiation formula [10], 
is carried out using very small time steps, the transient solution 
of a transmission line circuit will converge only to that of the 
reduced frequency model, not the original one. Furthermore, 
there is no explicit formula for determining the time domain 
error or accuracy of the frequency methods. Therefore, time 
accuracy control is not possible. Another disadvantage of the 
frequency approximation method is that only the transient 
results at the terminal ends of the line are calculated. If the user 

needs to find the transient at some internal points within the 
line, he/she has to divide the line at those points into several 
segments before starting the simulation. 

The spatial approximation methods derive the time domain 
companion model directly from the telegraph equation. Two 
examples are the state-based [11] and the semi-discretization [12] 
methods. This companion model was shown to depend on the 
voltage and current distributions along the line at previous time 
points. Since the telegraph equation is used within the time 
iteration loop, the transient solution can converge to the exact 
solution as the time step is reduced. Unfortunately, the exact line 
voltage and current distributions cannot be analytically 
described; therefore, they must be approximated in the spatial 
domain by simple functions. Both the state-based and semi-
discretization methods propose piecewise linear approximation. 
Moreover, they do not provide concrete details of the mechanism 
for controlling the accuracy of the piecewise linear 
approximation. Therefore, it is not clear whether its transient 
solution can be theoretically guaranteed to converge to the exact 
solution as the time step is reduced to increase transient accuracy. 

This paper describes a variation of the distributed state 
variable (DSV) method for handling a transmission line in the 
time domain. The method was first introduced in [13]. It is a 
spatial approximation method, but it differs significantly from 
other previously mentioned methods in its derivation and 
implementation procedures. In the DSV method, line voltage 
and current distributions are treated as the state variables of the 
transmission line and are called DSVs. The telegraph equation 
can be transformed into a first-order state equation in terms of 
these DSVs. Thus, conventional backward differentiation 
techniques can be directly applied in the same way as other 
lumped dynamic components, such as capacitors and inductors. 
The method also gives the time domain companion model of a 
transmission line along with the formula to compute its local 
truncation error (LTE). This LTE is used to determine the 
appropriate time step. However, it will be shown that the DSVs 
become more complicated with time and more 
computationally expensive to track. To simplify these 
distributions, the piecewise exponential (PWE) function is 
proposed to be used where appropriate. However, the accuracy 
of this spatial approximation method is controlled by the 
computed LTE. The transient solution of the transmission line 
circuit can converge to the exact solution as the time step 
decreases because the LTE will also decrease. One advantage 
is that the line voltage and current distributions at all times are 
calculated and can be stored. Thus, users can view these 
distributions at any time or point without having to divide the 
line and restart the simulation.  

This paper is organized as follows. The basic concept of the 
DSV method is given in section II. In section III, the PWE 
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Fig. 3. N+1 coupled transmission line with the bottom line treated
as a reference. 
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approximation is introduced to simplify these distributions at 
each time point and its error formula is derived. An algorithm 
which dynamically divides the transmission line into several 
segments is also described. A rigorous criterion for controlling 
the approximation errors that depend on the LTE is also 
suggested. Several examples are given in section IV to 
demonstrate how the method works. 

II. Distributed State Variable  

The type of transmission line considered in this paper is a set 
of N+1 coupled uniform transmission lines with the unit length 
as shown in Fig. 3. 

Let the bottom line be treated as a reference line. The 
dynamic behavior of the other lines with respect to the 
reference line can be described by the telegraph equation as   

( , ) 0 ( , ) 0 ( , )
, 

( , ) 0 ( , ) 0 ( , )
v L v R v
i C i G i

x t x t x t
x t x t x tx t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂
= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(2) 

where v(x,t) and i(x,t) are vectors of N voltage and current 
distributions at distance x and time t with respect to the 
reference line; L, C, R, and G are N N×  matrices of 
inductance, capacitance, resistance, and conductance measured 
as per unit distance and with respect to the reference line. To 
implement our analysis approach, the telegraph equation (2) 
can be formulated as  
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If we simply treat x∂ ∂  as an operator, then (3) can be  
viewed as an ordinary differential equation or state equation  
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DSV of the transmission line, and we call (3) the DSV 
formulation of the telegraph equation. This formulation allows 
us to treat the whole set of coupled transmission lines as a 
single dynamic component in the same way as we treat a 
capacitor or an inductor because they are all described by state 
equations. Therefore, all numerical steps used to deal with 
capacitors and inductors in the transient simulation can be 
applied directly to the transmission line. That is, the time 
derivative of its state variable must first be discretized by the 
well known backward differentiation formula [11]. In this 
paper, we shall apply the backward Euler differentiation 
formula with time step hn=tn–tn-1 to approximate the time 
derivative in (3) at time tn as  
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 is the vector of the initial line voltage and   

current distributions. Without loss of generality, we assume that 
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 = 0 for all [0,1]x ∈ . Note that (4) is a recursive  

equation describing the distribution at tn in terms of its previous 
value at tn-1. After some algebraic manipulation, this equation 
can be rewritten as 
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where nM = 
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A .  

The recursive property of (5) can be combined from 0 to tn in 
the following matrix form:  
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From this, the solution of (6) can be solved to obtain 



ETRI Journal, Volume 31, Number 1, February 2009 Panuwat Dan-Klang et al.   45 

[ ]
( )

0, , (0)
( )

v
I

i
n x

n

x
e y

x
Γ⎡ ⎤

=⎢ ⎥
⎣ ⎦

 

          = 1 1( ), , ( ), (0)n x
nx x e yψ ψ −⎡ ⎤⎣ ⎦

M .        (8) 

This equation can be rewritten as 
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With 1x = , we obtain the following relationship between 
the line terminal voltages and currents:  
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This equation describes the time domain companion model 
of the transmission line with respect to its terminals on both 
ends, where (1)nΨ  is a constant term whose calculating 
formula is described in the appendix. To comply with the nodal 
equation formulation, we perform some matrix operations and 
obtain the following input admittance matrix of the 
transmission line as well as its model given in Fig. 4: 
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where 12 =Y 1 1sinh ( )Zn n
− − Λ and 1 2=Y Y = 1 1tanh ( )n n

− − ΛZ . 
A standard circuit simulator can then use this companion 

model along with the companion models of other components, 
such as capacitors and inductors to set up the circuit matrix 
equation at time tn. Once, the circuit equation is solved, vn(0), 
in(0), vn(1), and in(1) can be used to determine the distribution  
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 according to the differential equation in (4). The  

DSV approach also allows the calculation of the LTE of the 
line as 

 

Fig. 4. Companion model of transmission line at both ends. 
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where T is a 2N×2N non-singular matrix used to weigh the 
voltage and current distributions. Since the first-order 
backward differentiation formula is used in the time 
discretization, the predicted value should be the first-order 
forward differentiation formula [8], that is, 
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The actual procedure for computing LTEn is given in the 
appendix. The computed LTE of the line is then used to 
determine the next time step, hn+1=tn+1–tn, along with the LTE 
of the other lumped dynamic components. 

III. Piecewise Exponential Approximation  

To study the computation complexity of the DSV method,  

we note that Mn is a 2N×2N matrix. It follows that 
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has 2Nn exponential terms. Thus, the total computational 
complexity of the DSV at time tn is of the order 
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Once M̂ is obtained, the calculation of wn+1(x) becomes 
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which is much simpler than using (7) or (8).  

A good strategy for finding M̂  would be to let 
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To maintain accuracy with respect to the transient simulation,  
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Otherwise, the approximation is not successful, and the 
segment is divided into two halves using a bisection algorithm, 
each of which is approximated by its own exponential function 
using the techniques described above. This time, the errors of 
the two segments are added before they are tested. If they still 
fail the test, only the segment that has the largest error will be 
divided. At the same time two adjacent segments may be 
combined if their error is acceptable. Hence, we are now ready 
to suggest the following segmentation algorithm. 

Step 1.  Set K=1 andα << 1. That is, treat the whole line as 
one segment. 

Step 2.  Compute ˆ
iM and ,iERR 1, ,i K= . 

Step 3.  Calculate ERR = 2

1

K

i
i

ERR
=
∑ . 

Step 4.  If ERR ≤ nLTEα ⋅ , exit. 
Step 5.  Determine î such that  

       îERR = max ( iERR , 1, ,i K= ).  

Step 6. Divide the ̂i -th segment into two at its middle point.  
Step 7. Set K=K+1 and go to step 2. 

IV. Numerical Examples 

The DSV with the piecewise exponential approximation 
(PEA) methods has been tested with 5 transmission line 
circuits using MATLAB to verify the calculations. Where 
applicable, all results are compared with a standard circuit 
simulator, Hspice [2]. The first circuit, shown in Fig. 5, consists 
of 4 uncoupled lossy transmission lines. The parameters of 
each transmission line are L=1 mH/m, C =1 μF/m, G =0 S/m, 
and R = 1 Ω/m. Each line is one meter long and starts with zero 
voltage and current distributions. Its unit step input has a 0.1 ms 
rise time. This circuit is simulated using 0.5 mV local 
truncation error, and the approximation error factor is α = 0.1. 
The simulated waveform at the load-end of line 1 is shown in 
Fig. 6. It is indistinguishable from the results of Hspice [2]. 
Figure 7 shows how the lines are segmented dynamically, and 
the maximum number of segments is 15. However, this 
number gradually decreases to 1 segment when the line 
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Fig. 5. Circuit diagram of 4 uncoupled lossy transmission lines
(0.1 ms). 
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Fig. 6. Voltage waveform at the v1(t) of the circuit in Fig. 5.
Allowable local truncation error is 0.5 mV, and
approximation error factor α is 0.1. 
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Fig. 7. Variation of number of exponential segments with time of
line 1 of the circuit shown in Fig. 5 at various time points.
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Fig. 8. Circuit comprising 3 lossy transmission lines. 

10 Ω v1(0, t) Line #1

Line #2

Line #3

5 pF v2(0, t) 

v3(0, t) 

10 Ω 

v2(1, t) 

v1(1, t) 

v3(1, t) 

10 Ω 

75 Ω 

10 Ω 

 

 

Fig. 9. Simulated waveform at the right end of the top line of the 
circuit in Fig. 8. Allowable local truncation error is 
0.5 mV, and approximation error α is 0.1. 

0 5 10 15 20 25
Time (ns) 

DSV+PEA
Hspice 

0.35

0.25

0.15

0.10

0

Vo
lta

ge
 (V

) 

0.05

0.20

0.30

 
 

 

Fig. 10. Voltage waveform at v2(1, t) of the circuit shown in Fig. 8.
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activities reach the DC steady state; therefore, the execution 
time can be fast. 

The circuit in the second example, shown in Fig. 8, consists 
of three joined transmission lines (N=3). The lines are 1 meter 
long with the following parameters:  

10 0 0
0 10 0 /m,
0 0 10

R
⎡ ⎤
⎢ ⎥= Ω⎢ ⎥
⎢ ⎥⎣ ⎦

  

1 0 0
0 1 0 mS/m,
0 0 1

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

100 25 2.5
25 100 25 nH/m,
2.5 25 100

L
⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦

50 10 1
10 60 10 pF/m.
1 10 50

C
− −⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The circuit has two unit step inputs, one at the top line and the 
other at the bottom line. The rise time of each unit step input is 
5 ns. The circuit is simulated using 0.5 mV maximum local 
truncation error, and the approximation error factor is α =0.1. 
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Fig. 11. Variation of number of exponential segments with time
of the circuit in Fig. 8.  

 
The simulated waveforms at v1(1, t) and v2(1, t) are shown in 
Figs. 9 and 10 and agree very well with those of Hspice. Figure 
11 shows only the number of segments used by our method, 
indicating fast computation. 

In the last example, we demonstrate the advantage of the 
DSV method that voltage and current distribution can be 
obtained simultaneously. This event cannot be obtained in a 
standard circuit simulation such as Hspice without segmenting 
the line before starting the simulation. This last example circuit, 
shown in Fig. 12, comprises three transmission lines with a 
fault within line 1. The line is 1 meter long and has the 
following distributed parameters:  

100 25 2.5
25 100 25 nH/m,
2.5 25 100

L
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

     
1 0 0
0 1 0 mS/m,
0 0 1

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

50 10 1
10 60 10 pF/m,
1 10 50

C
− −⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

    
1 0 0
0 1 0 /m.
0 0 1

R
⎡ ⎤
⎢ ⎥= Ω⎢ ⎥
⎢ ⎥⎣ ⎦

 

A fault occurs at x=0.7 m and at 0.4 ps in the form of a 0.4 A 
current pulse with a 0.2 ps pulse-width, which is about 10 % of 
the transmission time delay. The distribution voltage across line 
2 is shown in Fig. 13.   

V. Conclusion 

The DSV for time domain simulation of circuit transmission 
lines has been presented. It transforms the telegraph equation 
into a state equation that allows the use of conventional 
techniques to obtain its transient response as well as local 
truncation error. The PEA method was also introduced to reduce 
the computational complexity of the DSV method. An algorithm 
based on a bisection scheme was introduced to segment the line  

 

Fig. 12. Circuit comprising 3 lossy transmission lines with fault 
occurring on one line. 
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Fig. 13. Line 2 voltage distribution of circuit shown in Fig. 12.

0.5

1.0

1.5
2.0

1.0 0.8 0.6 0.40.20

0

6
8

Vo
lta

ge
 (V

) 

Distance (m) 

Ti
m

e 
(n

s)
 0

10

4

2

 
 
dynamically so that the approximation error is small compared to 
the local truncation error. Numerical examples showed that this 
combined DSV-PEA method works very well and requires a 
small number of segments; therefore, this method can be 
computationally efficient. However, the calculations of the local 
truncation error as well as the approximating functions and error 
require complex matrix calculations such as those shown in the 
appendix. No CPU time comparison with existing circuit 
simulations was carried out, and we do not expect our method to 
execute faster. The key advantages of this method are that its 
accuracy can be automatically adjusted based on the user 
specified value of the local truncation error and that the voltage 
and current distribution can also be obtained without extra 
calculation or explicit segmentation of a line.  

Finally, we give here a short remark about how forward and 
reflect waves can be computed as by-products of the 
simulation output.  

Forward wave: [ ]1 1
1( ) ( ) ( ) ( )
2 cV s V s Z s I s+ = +      (22) 

Reflected wave: [ ]2 2
1( ) ( ) ( ) ( )
2 cV s V s Z s I s− = +     (23) 

Here, 1( ) ( )( ) .cZ s Ls R Cs G −= + +  
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 By performing the inverse Laplace transform, these two 
equations become 

 [ ]1 1
1( ) ( ) ( ) ( ) ,
2 cv t v t z t i t+ = + ∗            (24) 

 [ ]2 2
1( ) ( ) ( ) ( )
2 cv t v t z t i t− = + ∗ ,           (25) 

where 1( ) ( )cz t i t∗  and 2( ) ( )cz t i t∗ are the convolution 
integrals, which can be time consuming. However, since Zc(s) 
is known, it is possible to invert Zc(s) by using Pade′ 
approximation [14] which accurately approximates Zc(s) with a 
rational function. Partial fraction expansion can be applied to 
this rational function which can then be inverted. Then, the 
convolution term can be carried out recursively [15], yielding 
the required forward and reflected waves at any time point. 
Note that the time step for recursive convolution can be the 
same as that used by the DSV method. In that case, the two 
processes can be carried out in parallel.  

Appendix 1. 

Lemma 1. This lemma will be needed in A2 and A3. 
Let T and M be matrices of appropriate dimensions. Then, 

1

0

M MT T
T x T xe e dx∫ = Me− [ ]

0

0
M

T T MI
T T

e
−⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

0
I⎡ ⎤

⎢ ⎥
⎣ ⎦

, 

where I is an identity matrix of the same dimension asM . 

Proof:  Let ( )xF  = 
0M

T T MT x

e
−⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦ = 

0
( )

M

MQ

x

x

e
x e

−⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Then, ( )d x
dx

F = 
0M

T T MT

−⎡ ⎤
⎢ ⎥
⎣ ⎦

0
( )

M

MQ

x

x

e
x e

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

             = 
0

( )

M

M

M

Q M

x

x

e
d x e
dx

−⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

from which we have 

( )d x
dx

Q = T xe−MT T + ( )xMQ  with (0)Q = 0. 

The solution of this differential equation at x = 1 is 

(1)Q = eM
1

0

x T xe e dx−∫ M MT T . 

Hence, 
1

0

x T xe e dx−∫ M MT T =e−M (1)Q . 

Substitute Q(1) from the definition of F(x) to end the proof.    

Appendix 2. Numerical Formula for Computing LTEn 
in (13) 

From (13) and (15), we have 

nLTE = 1 2
1 1

( ) (1 ) ( ) ( )n n
n n n

n n

h h
h h− −

− −

⋅ − + ⋅ + ⋅w w w . 

Using the definition in A1, we can rewrite LTEn as 

nLTE = ( )⋅Ly = (0)L yxeΓ , 

where L =
1 1

( ) ( )n n

n n

h h
h h− −

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
0 0 I I I I  

Applying the definition of the norm in (12), we obtain 

2
nLTE  = 

1

0

(0) (0)y L T TL y
TT x T T xe e dxΓ Γ∫ . 

Apply the result of lemma 1, and we have  
2
nLTE = (0) (0)y Q yT , 

where [ ]
0

0
0

L T TL I
Q I

T T T

e e
−Γ⎡ ⎤

⎢ ⎥
Γ−Γ ⎢ ⎥⎣ ⎦ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and I is an identity 

matrix with the same dimension as Γ . 

Appendix 3. Numerical Formula for Computing ERRi 

Based on the definitions in (7), let 

ˆ ( )n xy =
( )

ˆ ( )
n

n

x
x

⎡ ⎤
⎢ ⎥
⎣ ⎦

y
w

, Γ̂ =
0
ˆ0 Mi

Γ⎡ ⎤
⎢ ⎥
⎣ ⎦

, and L =[ ]nE I− . 

Then, (7) and (14) can be combined to give 

ˆ ( )n xy = 1
ˆ ( )ix xe −Γ −

1ˆ ( )n ix −y   for 1ix − ≤ x ≤ ix . 

Also, ERRi can be formulated as 

2
iERR =

1

ˆ[ ( )]L y
i

i

x
T

n
x

x
−

∫ ˆ[ ( )]T T L yT
n x dx  

     = 1ˆ ( )T
ix −y 1

1

ˆ ( ) L T
i

i

i

x
x x T T T

x

e −

−

Γ −∫ 1
ˆ ( )TL ix xe dx−Γ −

1ˆ ( )n ix −y  

     = 1( )i ix x −− 1ˆ ( )T
ix −y

1
ˆ

0

L TT T Te τΓ∫
ˆ

1ˆ ( )TL yn ie d xτ τΓ
−  

     = 1( )i ix x −− 1ˆ ( )T
ix −y Q 1ˆ ( )ix −y , 

where Q = ˆe−Γ [ ]
ˆ 0

ˆ0 L T TLI
T T T

e
⎡ ⎤−Γ
⎢ ⎥
⎢ ⎥Γ⎣ ⎦  

0
I⎡ ⎤

⎢ ⎥
⎣ ⎦

 and I is an identity 

matrix with the same dimension as Γ̂ . 
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