• Title/Summary/Keyword: Local Coordinate System

Search Result 134, Processing Time 0.031 seconds

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF

Calculation of Local Coordinate of Common Points for Coordinate Transformation by Trilateral Adjustment (좌표변환 공통점의 지역측지계 조정좌표 산출 - 삼변망조정계산의 활용 -)

  • Yang, Chul Soo;Kang, Sang-gu;Song, Wonho;Lee, Won Hui
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.103-115
    • /
    • 2024
  • Trilateral adjustment can complement the problem of transforming cadastral maps into World Geodetic Coordinate system. First, it is possible to determine adjusted coordinate of common points that match each other over a wide area. Second, calculations that focus on specific points can be performed. Third, a solution that maintains the shape of the regional network can be obtained through constraints. Thus, the point coordinates can be determined appropriately for the survey system. In addition, heterogeneous survey results that span regions with different coordinate origins can be calculated on a single origin coordinate. This improves the efficiency of the workflow in tranforming cadastral maps into World Geodetic Coordinate System.

Rank-based Formation for Multiple Robots in a Local Coordinate System (지역 좌표에서 랭크기반의 다개체 로봇 포메이션 제어)

  • Jung, Hahmin;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2015
  • This paper presents a rank-based formation for multiple agents based on potential functions, where the proposed method uses the relative position of two neighboring agents. The conventional formation scheme of multiple systems requires communication between agents and a central computer to get the positions of all multiple agents. In the study, differently from previous studies, the formation scheme uses the relative position of two neighboring agents in a local coordinate system. In addition, it introduces a singular agent association that considers only the relative position between an agent and its neighboring agents, instead of multiple associations among all information about all agents. Furthermore, the proposed framework explores the benefits of different formation types. Extensive simulation results show that the proposed approach verifies the viability and effectiveness of the proposed formation.

Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions (Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션)

  • 윤영묵;박준우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

Extraction of Geomagnetic Field from KOMSAT-1 Three-Axis Magnetometer Data

  • Hwang, Jong-Sun;Lee, Sun-Ho;Min, Kyung-Duck;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.242-242
    • /
    • 2002
  • The Earth's magnetic field acquired from KOMPSAT-1's TAM (Three-Axis Magnetometer) between June 19th and 21st 2000 was analyzed. The TAM, one of the KOMPSAT-1's Attitude and Orbit Control Subsystems, plays an important role in determining and controlling the satellite's attitude. This also can provide new insight on the Earth's magnetic field. By transforming the satellite coordinate from ECI to ECEF, spherical coordinate of total magnetic field was achieved. These data were grouped into dusk (ascending) and dawn (descending) data sets, based on their local magnetic times. This partitioning is essential for performing 1-D WCA (Wavenumber Correlation Analysis). Also, this enhances the perception of external fields in the Kompsat-1's TAM magnetic maps that were compiled according to different local. The dusk and dawn data are processed independently and then merged to produce a total field magnetic anomaly map. To extract static and dynamic components, the 1-D and 2-D WCAs were applied to the sub-parallel neighboring tracks and dawn-dusk data sets. The static components were compared with the IGRF, the global spherical harmonic magnetic field model. The static and dynamic components were analyzed in terms of corefield, external, and crustal signals based on their origins.

  • PDF

DS/Block - a CAD-based software system for simulation of lifting and turnover of ship block (CAD를 이용한 선박 블록의 이동 및 반전 시뮬레이터 DS/Block의 개발)

  • Lee, Soo-Bum;Shin, Sang-Bum;Kim, Jung-Soo;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.164-169
    • /
    • 2001
  • A comprehensive extension of functions and efficiency of the software system, DS/Block, developed earlier for the purpose of simulation of the motion of a ship block during lifting and turnover operation. A viewpoint change used in 3D-CAD is utilized and saves the time for displays of a series of configurations for the motion. The Euler parameters are adopted to convert 3 rotational degrees of freedom about global coordinate system to those about local coordinate system defined in Pro/ENGINEER. DS/Block provides FEM input data for stress and strain analyses. Several functions are incorporated for user-friendliness. DS/Block is to be tested and installed in a shipyard.

  • PDF

A Nonlinear Reduced Order Observer Design and Its Application to Ball and Beam System (비선형 저차화 관측기의 설계기법 및 구보시스템에의 적용)

  • 조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.630-637
    • /
    • 2004
  • In this paper, we present a local reduced-order observer for a class of nonlinear systems that have full robust relative degree. The proposed observer utilizes the coordinate change which transforms a nonlinear system into an approximate normal form. The proposed reduce order observer is applied to a ball and beam system, and simulation results show that substantial improvement in the performance was achieved compared with the jacobian linearization observers.

A Thin Circular Beam Finite Element for Out-of-plane Vibration Analysis of Curved Beams (곡선 보의 면외 진동해석을 위한 얇은 원형 보 유한요소)

  • Kim, Chang-Boo;Kim, Bo-Yeon;Song, Seung-Gwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1598-1606
    • /
    • 2007
  • In this paper, we present a thin circular beam finite element for the out-of-plane vibration analysis of curved beams. The element stiffness matrix and the element mass matrix are derived respectively from the strain energy and the kinetic energy by using the natural shape functions which are obtained from an integration of the differential equations of the finite element in static equilibrium. The matrices are formulated with respect to the local polar coordinate system or to the global Cartesian coordinate system in consideration of the effects of shear deformation and rotary inertias. Some example problems are analysed. The FEM results are compared with the theoretical ones to show that the presented finite element can describe quite efficiently and accurately the out-of-plane motion of thin curved beams.

  • PDF

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF