• Title/Summary/Keyword: Load Relaxation

Search Result 154, Processing Time 0.022 seconds

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

Study on the Mechanical Properties of the Rice Plants Subjected to Radial Load -Analysis of Relaxation Behavior- (측방향하중(側方向荷重)에 의한 벼줄기의 역학적특성(力學的特性)에 관한 연구(I) -이완거동 분석-)

  • Huh, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.402-409
    • /
    • 1993
  • During all mechanical processes rice plants are subjected to verious forces such as natural load of wind and mechanical load of agricultural machines. A force is always accompanied by deformation, which must be either sufficiently great for pressing or sufficiently slight in order to avoid damage. The mechanical behavior of the rice plants is determined by three variables : force, deformation and time. And they must be studied using rheological methods to determine their viscoelastic properties. This study is conducted to experimentally determine the mechanical and rheological properties of the rice stalks subjected to radial load. The force relaxation tests are performed under constant deformation, during which the reduction of forces over time is measured. The mechanical models were developed from the abtained data. The results were as follows : 1. The relaxation behavior of a rice stalk in radial compession may be described by a generalized Maxwell model consisting of 3 Maxwell elements in parallel. 2. Relaxatiom intensity always decreased with increased time of relaxation. 3. The rate of deformation has a significant effect on the relaxation behavior. having increasing pattern with an increase in rate of deformation. 4. The relaxation intensity and residual deformation increased with increased initial load. 5. The relaxtion of the intermediate portion of stalk was bigger tham that of the upper and lower portions.

  • PDF

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Nonlinear analysis using load-displacement control

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Lim, Beom-Soo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.153-172
    • /
    • 2005
  • A new load/displacement parameter method is proposed for the simultaneous control of applied loads and structural displacements at one or more points. The procedure is based on a generalized Riks' method, which utilizes load/displacement parameters as scaling factors to analyze post-buckling phenomena including snap-through or snap-back. The convergence characteristics are improved by employing new relaxation factors through an incremental displacement parameter, particularly in a region that exhibits severe numerical instability. The improved performance is illustrated by means of a numerical example.

Streets of Relaxation Therapy and Exercise Therapy on Catecholamine and Heart Rate Response for Job Stress of White Color Workers (사무직 근로자에 대한 운동요법과 이완요법이 스트레스 반응으로 카테콜라민과 심박수에 미치는 영향)

  • Kim In-Hong
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.6 no.2
    • /
    • pp.240-254
    • /
    • 1999
  • The purpose of this study was to investigate the effect of exercise therapy and relaxation therapy on catecholamine and heart rate in people in white color jobs and to determine this information the effectiveness of applied exercise therapy and relaxation therapy as a nursing intervention method for stress patients. The subjects were divided into an exercise therapy group, a relaxation therapy group, and control group and the research design was a nonequivalent control group pretest-post test design(exercise therapy : n= 12, relaxation therapy : n=12, control group, the group without any treatment in exercise on relaxation therapy : n=12), The subjects in the exercise therapy group were given a particular intensity for each kp during 30min, bicycle ergometer which is using an LX PE training system before & after 4weeks of training. The exercise therapy that was used was Astrard load method which tested absolute exercise load of heart rate before & after four weeks, and resting heart rate was tested for exercise and relaxation therapy before, after four weeks, and at eight weeks. The results of each kp & absolute exercise load were calculated with the target rate formula(maximal heart rate-rest heart rate) x exercise intensity(%) + rest heart rate so the subjects could continue 60-70% exercise intensity for exercise therapy over eight weeks. The relaxation therapy subjects were trained using a modified Jacobson's relaxation technique for eight weeks. The exercise and relaxation therapy were trained at the following intensity for eight weeks(3times/week, 30min/day) to see changes in catecholamine & heart rates. After eight weeks, statistical analysis of exercise & relaxation therapy were carried out Two-way ANOVA and multiple range test(SNK : Student Newman Keul) were used. The results are as follows : 1. The change of epinephrine & norepinephrine in the exercise therapy, relaxation therapy, and control group was statistically significant at the .05 level after four weeks & eight weeks. Also, exercise therapy was statistically significant at .05 level over that of the control group after 4weeks. 2. The change of heart rate in relaxation therapy was statistically significant at the .05 level, and was statistically significant at the .05 level over that of the exercise therapy and control group. In conclusion, it is obvious that exercise therapy and relaxation therapy should be one of the most effective stress treatment and desirable nursing interventions methods for job stress in people in white color jobs.

  • PDF

Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy (분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

A Study on Earth Pressure Calculating Method about Shield TBM Tunnel Segments in the Rock (암반층에서 쉴드 TBM 터널 세그먼트의 작용하중 산정방법에 관한 연구)

  • Chun, Byungsik;Ki, Jungsu;Kang, Taehee;Kwag, Yunehyeong;Byun, Yoseph
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study analyzed the differences in the analysis techniques through a comparative analysis of the various segment's modeling techniques of Shield TBM method and proposed reasonable modeling techniques. Also, this study suggested reasonable estimating methods of load to be applicable in the field through the load analysis and three-dimensional finite element analysis by estimating model of rock mass relaxation load. Estimating method of relaxation area by rock mass rating makes no odds of output in subgrade with high rock mass rating, but so the difference of output is large, that is judged to set conservative design off. In estimating result of rock mass relaxation area by three-dimensional analysis relaxation area of subgrade with low-grade soil was predicted to be positioned at medium-range of many methods, in case of designing segment in subgrade with low-grade soil it needs to actively review estimation of relaxation area through three-dimensional analysis reflecting mechanical tunnel excavation.

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

The Effect of a Submaximal Exercise Load on the Change in Blood Components. (최대하 운동부하가 혈액성분변화에 미치는 영향)

  • 이충훈
    • Korean Journal of Health Education and Promotion
    • /
    • v.14 no.1
    • /
    • pp.173-182
    • /
    • 1997
  • This study presents the results observed in the change in blood components of ten female students of “K” university's physical Education Department during submaximal exercise, relaxation and recovery periods. 1. After ecercise, the WBC value is higher than in relaxation time. Also within thirty minutes of the relaxation period it does not return to the normal range. 2. After exercise, the RBC value is higher than during relaxation time. Also in the recovery period, within 30 minutes it returns to the normal range. 3. After exercise. the RCT value is higher than during relaxation time. Also in the 30 minutes recovery period it returns to the normal range of relaxation. 4. After exercise, the Hb value is higher than during relaxation time. It rises slowly after exercise and returns to the relaxation range in the 30 minutes recovery period. 5. After exercise and in 10 minutes of the recovery period, the value of Glucose is lower than during relaxation time. It returns to the relaxation range in 30 minutes of the recovery period. 6. After exercise the value of protein is higher than during relaxation time. It returns to the relaxation range within ten to thirty minutes of the recovery period.

  • PDF