DOI QR코드

DOI QR Code

A Study on Earth Pressure Calculating Method about Shield TBM Tunnel Segments in the Rock

암반층에서 쉴드 TBM 터널 세그먼트의 작용하중 산정방법에 관한 연구

  • Received : 2013.12.30
  • Accepted : 2014.04.01
  • Published : 2014.05.01

Abstract

This study analyzed the differences in the analysis techniques through a comparative analysis of the various segment's modeling techniques of Shield TBM method and proposed reasonable modeling techniques. Also, this study suggested reasonable estimating methods of load to be applicable in the field through the load analysis and three-dimensional finite element analysis by estimating model of rock mass relaxation load. Estimating method of relaxation area by rock mass rating makes no odds of output in subgrade with high rock mass rating, but so the difference of output is large, that is judged to set conservative design off. In estimating result of rock mass relaxation area by three-dimensional analysis relaxation area of subgrade with low-grade soil was predicted to be positioned at medium-range of many methods, in case of designing segment in subgrade with low-grade soil it needs to actively review estimation of relaxation area through three-dimensional analysis reflecting mechanical tunnel excavation.

본 연구에서는 쉴드 TBM 공법의 다양한 세그먼트 모델링 기법에 따른 비교 해석을 통하여 해석기법에 따른 차이를 분석하고 이에 따른 합리적인 모델링 기법을 제안하였다. 또한 암반 이완하중 산정모델에 따른 하중 분석 및 3차원 유한요소해석을 통하여 실제 현장에서 적용 가능한 합리적인 하중산정 방법을 제시하였다. 암반분류에 의한 이완영역의 산정방법은 암반등급이 높은 지반에서는 결과의 차이가 크지 않으나 지반등급이 낮은 지반에서는 그 차이가 매우 크게 나타났으며, 3차원 해석에 의한 이완영역 산정결과 지반등급이 낮은 지반의 이완영역은 각 방법의 중간 정도 범위에 위치할 것으로 예측되었으며 지반등급이 낮은 지반의 세그먼트 계획 시에는 기계식 터널 굴착 특성을 반영한 3차원 해석을 통한 이완영역의 산정을 적극 검토할 필요가 있다.

Keywords

References

  1. 이인모 (2004), 터널의 지반공학적 원리, 새론출판사, pp. 371-378.
  2. Barton N., R Lien and J. Lunde (1974), Engineering classification of rock masses for the design of tunnel support, Rock Mechanics, Vol. 6, No. 4, pp. 183-236.
  3. Bhasin, R. and Grimstad, E. (1996), The use of stress-strength relationship in the assessment of tunnel stability, Proc. Recent Advances in Tunnelling Technology, New Delhi, India, Vol. 11, No. 1, pp. 93-98.
  4. Bieniawski Z. T. (1989), Engineering rock mass classifications, Wiley, New York, pp. 245-260.
  5. KEPCO (2007), Report of new Seongnam 345 kV installation, pp. 127-129 (in Korean).
  6. KEPCO (2008), Report of Gangnam 154 kV installation, pp. 282-286 (in Korean).
  7. Kommerell (1912), Statische berechnung von tunnelmauerwerk, Wilhelm Ernst & Sohn, Berlin, pp. 42-78.
  8. Protodyakonov, N. M. (1963), Firmness coefficient for estimation of rock loads, Personal communication to Beas Design Organisation New Delhi, India, pp. 65-76.
  9. Terzaghi, K. (1946), Rock defects and loads on tunnel support : in rock tunnelling with steel supports by proctor, R. V. and White, T. L., Commercial Shearing Co., Youngstown, Ohio, pp. 15-99.
  10. Unal, E. (1983), Design guidelines and roof control standards for coal mine roofs, Ph. D dissertation, Pennsylvania State University, pp. 350-360.

Cited by

  1. 쉴드 터널 세그먼트 라이닝의 신뢰성 설계를 위한 변수의 변동계수 결정 vol.21, pp.6, 2014, https://doi.org/10.9711/ktaj.2019.21.6.875