• Title/Summary/Keyword: Load Limit Valve

Search Result 20, Processing Time 0.024 seconds

Stability evaluation of a proportional valve controller for forward-reverse power shuttle control of agricultural tractors

  • Jeon, Hyeon-Ho;Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Hyeon;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.597-606
    • /
    • 2021
  • Due to the characteristics of the farmland in Korea, forward and reverse shift is the most used. The fatigue of farmers is caused by forward and reverse shifting with a manual transmission. Therefore, it is necessary to improve the convenience of forward and backward shifting. This study was a basic study on the development of a current control system for forward and reverse shifting of agricultural tractors using proportional control valves and a controller. A test bench was fabricated to evaluate the current control accuracy of the control system, and the stability of the controller was evaluated through CPU (central processing unit) load measurements. A controller was selected to evaluate the stability of the proportional valve controller. The stability evaluation was performed by comparing and analyzing the command current of the controller and the actual current measured. The command current was measured using a CAN (controller area network) communication device and DAQ (data acquisition). The actual current was measured with a current probe and an oscilloscope. The control system and stability evaluation was performed by measuring the CPU load on the controller during control operations. The average load factor was 12.27%, and when 5 tasks were applied, it was shown to be 70.65%. This figure was lower than the CPU limit of 74.34%, when 5 tasks were applied and was judged to be a stable system.

Geometrical Analysis on Parts of Load Limit Valve for Static Structural Test of Aerospace Flight Vehicles (항공우주 비행체 정적구조시험용 하중제한밸브 부품 형상 분석)

  • Shim, Jae-Yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.607-616
    • /
    • 2019
  • Free body diagram analysis is done for key parts of pilot stage of LLV (Load Limit Valve) which is used to protect overload for static structural test of aerospace flight vehicle. It is shown through the analysis that diameter ratio($D_2)^{ten}/D_2)^{comp}$) of two poppets in a pilot stage must be equal to piston area ratio($A_{comp}/A_{ten}$) of a hydraulic actuator for making a poppet open consistently at constant force applied by an actuator. The result of the analysis is verified by measuring geometries of the poppets in the four different LLVs which are corresponding to four actuators with different capacity and have been used after being imported in this laboratory. Results of "Adjuster resolution tests" with two different pilot stages show the max. deviation of Fi(actuator force in instant of opening poppet) from average Fi obtained for each turn of adjuster is 0.3KN and max. deviation of the Fi normalized by average Fi of each turn of adjuster is 3.7%. From the results, it is verified that the two pilot stages with same poppet diameter ratio make a poppet consistently open at Fis within ${\pm}3.7%$ deviation from the average Fi. The deviation is shown to be caused from frictional force of O-ring in the poppet. Additionally, design factors for poppet spring and adjuster, which are also key parts of the pilot stage, are distinguished and procedure for deciding the factors are also shown in this study.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

Lean Combustion Characteristics in a S.I Engine with SCV by Operating Conditions (SCV 가솔린 엔진의 운전조건에 따른 희박연소 특성)

  • Choi, Su-Jin;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Lean combustion in a SI engine is one of the best solution for the improvement of fuel economy and reduction of pollutant emission. In order to access a lean combustion engine, stable combustion at lean AlF ratio is needed. In this paper, the effect of fuel injection timing on lean misfire limit has been investigated in an MPI engine. To investigate the interaction of injection timing and intake flow characteristics, three different swirl generating SCV(swirl control valve) configurations were considered, and investigated their effects on lean misfire limit and torque at full load operation. Also the effects of spark timing on lean combustion has been investigated. Lean combustion has been examined and the results are reported in this paper. SCV B has been developed to satisfy the requirements of sufficient swirl generation to improve lean combustion and stable performance. It is found that injection timing, spark timing and intake air motion govern the stable lean combustion.

Effects of Port Masking on fart Load Performance: Part II - Emission and Fuel Economy (포트 마스킹이 엔진의 부분부하 성능에 미치는 영향: Part II - 배기 및 연비특성)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.23-29
    • /
    • 2001
  • This paper is the second of companion papers, which investigate port-masking effects on emission and fuel economy. Port-masking was applied to commercial SOHC 3-valve engine by inserting masking plates between manifold and port. To induce various conditions of stratification, six types of masking plates were applied. In this paper, main interest is focused on the influence of injection timing on emission and fuel economy. Various injection timing was applied to the six cases, under the stoichiometric and lean-limit air-fuel ratio. Under the stoichiometric condition, an explanation about the reason of the change in emission level due to injection timing change is given. It is observed that NOx emission under the LML condition varies significantly when the injection timing changes.

  • PDF

A Numerical Study on the IRWST Pool Temperature Distributionin in APR1400 (APR1400 IRWST Pool 온도분포 해석)

  • Kang, Hyung-Seok;Bae, Yoon-Y.;Park, Jong-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.813-820
    • /
    • 2001
  • The Safety depressurization System(SDS) of KNGR prevents RCS from overpressurization by discharging high pressure and temperature coolant through the I-sparger into the IRWST during an accident. If IRWST water temperature rise locally, around the sparger, beyond $200_{\circ}$2000 F by the discharged coolant, unstable steam condensation can cause large pressure load on the IRWST wall. To investigate whether this condition can be avoided for the design basis event IOPOSRV(Inadvertent Opening of one Pilot Operated Safety Relief Valve), the flow and temperature distribution of water in the IRWST is calculated by using CFX 4.3 computational fluid dynamic code. According to the results, since pool water temperature does not exceeds temperature limit within 50 seconds after the opening of one POSRV, it can be assured that the integrity of IRWST wall is maintained.

  • PDF

A study on Displacement-Load Calibration of Multi-Axis Simulator (다축 시뮬레이터의 변위-하중 보정에 관한 연구)

  • 정상화;류신호;신현성;김상석;박용래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.591-594
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particulary important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, 3-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving 3-axis vibration testing device is developed and the displacement of the 3-axis actuator is separately calibrated by LDT Moreover, the input and output data are displayed in windows of PC controller with real time.

  • PDF

An Introduction to Test Methods about Steam Valves of Steam Turbines in Power Plants (발전소 운전 중 증기터빈 밸브 시험 방식 소개)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1601-1602
    • /
    • 2007
  • Steam stop valves of steam turbine in the power plant are at their 100% position and have no movements. Steam control valves, ie governor valves have no movements either at their controlling position on load limit operation. By the way, if there were no change of operation state, steam valves could be sticked mechanically. Because the governor could fail in protecting and controlling steam turbine in case of emergency conditions, the closing test of 100% valve travel must be accomplished periodically for the purpose of testimony of their good conditions. And, As the difference between steam turbine structures exists according to the manufacturer or generation capacity, both steam stop valves and steam control valves differes in structure and operation method. Therefore, it is essential for not only turbine protection but also control for the control engineers to find out composition of steam valves and method of closing test.

  • PDF

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.