• Title/Summary/Keyword: Load Frequency Control

Search Result 790, Processing Time 0.026 seconds

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

Instantaneous Current Control for Parallel Inverter with a Current Share Bus (전류공유버스를 이용한 병렬 인버터 순시 제어기 설계)

  • 이창석;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

Characteristic of Linear Inductive Power Transmission According to the load variation (부하 변동에 따른 선형 유도 전력 전달 장치의 특성 해석)

  • 구대현;홍정표;강도현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.595-601
    • /
    • 2003
  • For a control of CPS(Contactless Power Supply), the paper deals with the results which are simulated by a equivalent electric circuit on the LIPT(Linear Inductive Power Transmission). In order to control the CPS, the output values is handled with the driving frequency according to the change of a load. The method that controls the driving frequency for adjusting the output power is reasonable to be applied to the controller. But, when the driving frequency meets the resonant frequency and passes, it lead to a serious problem. Therefore, the controlled region of the driving frequency has to be predicted and determined by the simulation of a electric circuit.

Fuzzy Logic Based Extended Integral Control for Load Frequency Control (부하 주파수 제어를 위한 퍼지 로직 기반 확장 적분 제어)

  • Ryu, Heon-Su;Lee, Jong-Gi;Kim, Seog-Joo;Kim, Baik;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.210-213
    • /
    • 2001
  • This study presents an effective variable forgetting factor method based on fuzzy logic to suppress frequency droop in extended integral load frequency control. The performance of the extended integral control is greatly dependent on the decaying factor. For an optimal or near optimal performance, it is necessary that the decaying factor as well as the feedback gains should be changed very quickly in response to changes in the system dynamics. However, because of its time-varing characteristic, the optimal decaying factor is difficult to be selected analytically. By adopting fuzzy set theory, the decaying factor can be determined quickly to respond to the variation of the feedback signals. This study builds a fuzzy rule base with use of the change of frequency and its rate as inputs. The computer simulation has been conducted for the single machine system. The simulation results show that the proposed fuzzy 1o81c based controller yields more improved control performance than the conventional PI controller.

  • PDF

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Determination of Secondary Reserve Requirement Through Interaction-dependent Clearance Between Ex-ante and Ex-post

  • Kim, Sun Kyo;Park, Joon-Hyung;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • This paper discusses a method for the determination of frequency control reserve requirement with consideration of the interaction between ex-ante planning and real-time balancing. In proposed method, we consider the fact that the delivered energy for tertiary control reserve is determined based on required capacity for secondary control reserve and the expected amount of load errors. Uncertain load errors are derived by Brownian motion, an optimization method is suggested using a stochastic programming. In a short, we propose an interactive dependent method for determining secondary control reserve requirement based on the principle that it satisfies to minimize the total cost. As a result, this paper provides will analyze for an example model to demonstrate the capabilities of the method.

Design of Optimal pm Controller Using Genetic Algorithm for Load Frequency Control of Power System (전력계통의 부하주파수 제어를 위한 유전 알고리즘을 사용한 최적 PID 제어기 설계)

  • Lee, J.P.;Wang, Y.P.;Kim, S.H.;Hur, D.R.;Chong, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.257-260
    • /
    • 1997
  • This paper designs the optimal PID controller for load frequency control on 2-area power system. Genetic algorithm is utilized to optimize parameters of PID controller which is applied to power system. Using two-point crossover, uniform crossover and one-point crossover, Search performance of genetic algorithm with each crossover method is considered. In case of load variation in 1-area, the dynamic characteristic of power system is considered. The simulation results show that the proposed PID controller is better control performance than PID controller using Ziegler-Nichols method.

  • PDF

A Study on the Load Frequency Control of 2-Area Power System Using Neural Network PID Controller (신경회로망 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구)

  • Chong, H.H.;Kim, S.H.;Joo, S.M.;Kim, K.H.;Yoo, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1021-1024
    • /
    • 1997
  • This paper has presented a method for self-tuning tile PID controller using a BP method of multilayered NNs. The proposed controller employ input signal as a learning signal of PID control. The proposed controller is applied to load-frequency control of power system and it is investigated a dynamic characteristic. The simulation results shows that proposed NN STPID controller has the good dynamics responses against load disturbances.

  • PDF

Dielectric Barrier Discharge for Ultraviolet Light Generation and Its Efficient Driving Inverter Circuit

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.101-105
    • /
    • 2004
  • The efficient power MOSFET inverter applied for a simple and low cost power supply is proposed for driving the dielectric barrier discharge (DBD) lamp load. For decades, the DBD phenomenon has been used for ozone gas production in industry. In this research, the ultraviolet and visible light sources utilizing the DBD lamp is considered as the load for solid-state high frequency power supply. It is found that the simple voltage-source single-ended quasi-resonant ZVS inverter with only one active power switch could effectively drive this load with the output power up to 700 W. The pulse density modulation based control scheme for the single-ended quasi-resonant ZVS inverter using a low voltage and high current power MOSFET switching device is proposed to provide a linear power regulation characteristic in the wide range 0-100% of the full power as compared with the conventional control based Royer type parallel resonant inverter type power supplies.