• 제목/요약/키워드: Load Capacity

검색결과 4,621건 처리시간 0.035초

RC-T 교량의 균열을 고려한 내하력평가 연구 (A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack)

  • 심재수;김춘호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

해진시 개단무리말뚝의 거동에 관한 모형실험 연구 (An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake)

  • 남문석;최용규;김재현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

비상발전기용량 산정식 개선에 관한 연구 (A Study on the Improvement of the Arithmetic for Emergency Generator Capacity)

  • 이종혁;김진오
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1517-1522
    • /
    • 2018
  • This paper describes the improvement of the arithmetic for emergency generator capacity. This formula which calculates emergency generator is dependent on the Korean Design Standard of building electrical equipment issued by the Ministry of Land, Infrastructure and Transport, and the technical data related to the generator. when appling the formula, the capacity of the generator is insufficient at the starting conditions of the load facility. In case of emergency, the generator is not operated normally. $PG_2$ of the formula ($PG_1$, $PG_2$, $PG_3$) applied in determining the capacity of the emergency generator is selected by calculating the capacity of the generator based on only biggest one motor among the load equipment and $PG_3$ may not be able to start the generator normally in case of emergency because there is an error such that the power factor is applied at the last start of the motor having the maximum capacity of the load. We analyze the problem of capacity calculation of emergency generators used for general purposes. As a consequence, the improved formulas have been presented for safety of electrical installation.

동재하시험을 이용한 모래지반의 말뚝지지력 산정 (Evaluation of Bearing Capacity of Piles in Sand Using Pile Driving Analyzer)

  • 이우진;석종수
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.145-154
    • /
    • 1997
  • 말뚝재하시험방법 중 정적재하시험은 시험에 소요되는 시간과 비용측면에서 불리하여 이를 개선하기 위한 여러 가지의 시험방법이 개발되어 소개되고 있다. 국내에 소개된 시험방법으로는 동재하시험으로 불리는 항타분석기 (PDA : Pile Driving Analyzer)를 이용한 방법을 비롯하여 STATNAMIC. Osterberg cell등이 있다. 이들 중 동재하시험의 사용은 상당히 활성화되어 있는 실정이나 지반조건과 말뚝시공방법에 따라서는 지지력산정시 추가적인 해석모델을 사용하여야 보다 정확한 지지력을 평가 할 수 있는 것으로 알려져 있다. 본 논문에서는 현장에서 수행한 정적 및 동적 재하시험결과의 비교1분석으로 부터 주로 SIP말뚝에 대한 동재하시험시 발생할수 있는 기하감쇠(geometrical damping)의 영향을 고찰하였다. 해석결과로 부터 기하감쇠가 발생한 지반의 경우 CAPWAP에 의해 산정된 지지력이 정재하시험에 의한 지지력에 비해 30~60% 정도 과소평가 되었으며 이때 말뚝주면에 대한 Smith의 감쇠계수 (SSkn)가 1.0 sec/m를 초과 하였다. CAPWAP해석시 기하감쇠를 고려한 해석모델을 사용함으로써 정재하 시험결과와 근사한 지지력을 얻을 수 있었으며 SSkn값도 0.7sec/m이하의 일반적인 범위로 해석되었다.

  • PDF

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

암반에 근입된 현장타설말뚝의 지지력 산정기준에 대한 평가 (Assessment of Design Criteria for Bearing Capacity of Rock Socketed Drilled Shaft)

  • 백규호;사공명
    • 한국지반공학회논문집
    • /
    • 제19권4호
    • /
    • pp.95-105
    • /
    • 2003
  • 암반에 근입된 현장타설말뚝의 지지력 산정을 위하여 제안된 기존의 설계기준과 경험식들의 대부분은 재하시험의 결과에 일관되지 않은 파괴기준을 적용해서 얻어진 극한지지력에 근거해서 얻어졌다. 그 결과 이들산정식들은 동일한 조건에 설치된 말뚝에 대해서도 서로 다른 예측치를 제공하게 된다. 본 연구에서는 암반에 근입된 현장타설말뚝의 지지력을 합리적으로 산정할 수 있는 최적의 지지력산정식을 결정하기 위하여 기존의 지지력산정식들에 대하여 정확도를 조사하였다. 이를 위해서 11개의 재하시험 결과에 동일한 파괴기준을 적용함으로써 말뚝의 극한선단지지력과 극한주면마찰력을 결정하였으며, 이들은 기존 산정식으로부터 계산된 예측치의 정확도 조사에 이용되었다. 예측치와 측정치를 비교한 결과 Zhang과 Einstein의 제안식과 NAVFAC의 설계기준에 의해 계산된 극한선단지지력이 실측치에 가장 근접한 것으로 나타났다. 그리고 극한주면마찰력의 경우에는 Rosenberg와 Journeaux의 제안식이 만족스러운 예측치를 제공하였다.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답 (Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls)

  • 한지민;이창석;한상환
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.