• Title/Summary/Keyword: Lithography System

Search Result 244, Processing Time 0.024 seconds

Nanophotonics of Hexagonal Lattice GaN Crystals Fabricated using an Electron Beam Nanolithography Process

  • Lee, In-Goo;Kim, Keun-Joo;Jeon, Sang-Cheol;Kim, Jin-Soo;Lee, Hee-Mok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.14-17
    • /
    • 2006
  • A thin GaN semiconducting film that grows on sapphires due to metalorganic chemical vapor deposition was machined for nanophotonic applications. The thin film had multilayered superlattice structures, including nanoscaled InGaN layers. Eight alternating InGaN/GaN multilayers provided a blue light emission source. Nanoscaled holes, 150 nm in diameter, were patterned on polymethylmethacrylate (PMMA) film using an electron beam lithography system. The PMMA film blocked the etching species. Air holes, 75 nm in diameter, which acted as blue light diffraction sources, were etched on the top GaN layer by an inductively coupled plasma etcher. Hexagonal lattice photonic crystals were fabricated with 230-, 460-, 690-, and 920-nm pitches. The 450-nm wavelength blue light provided the nanodiffraction destructive and constructive interferences phenomena, which were dependent on the pitch of the holes.

Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes (히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상)

  • Park, Gyu Jin;Yang, Jin Oh;Lee, Jae Joong;Kwak, Ho Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

A Study on Feature Division using Sliced Information of STL Format (STL 포맷의 단면정보를 이용한 형상분할에 관한 연구)

  • Ban, Gab-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2002
  • Stereolithography is the best known as rapid prototyping system. It uses the STL format data which is generated from CAD system. In this study, One of the main function of this developed CAM system deals with shape modification which divide a shape into two parts or more. The cross section of a STL part by a z-level is composed with nested or single polygonal closed loop. In order to make RP product, closed loops must fill with triangular facets from SSET and recover sliced triangular facets which is located normal direction to the cross sectional plane. The system is development by using Visuall C++ compiler in the environment of pentium PC. Operating system is Windows NT workstaion from Micro-Soft.

  • PDF

Fabrication of High Ordered Nano-sphere Array on Curved Substrate by Nanoimprint Lithography (나노임프린트 리소그래피를 이용한 곡면 기판 위에 정렬된 나노 볼 패턴 형성에 관한 연구)

  • Hong, S.H.;Bae, B.J.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.331-334
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. First, silica nano-sphere array on Si substrate was transferred to PVC film at $130^{\circ}C$ and 7 bar using hot embossing process. Then, silica nano-sphere array on PVC template was removed by soaking the PVC film in buffered oxide etcher. In order to form anti-stiction layer, the PVC template was coated with silicon dioxide layer and self-assembled monolayer. Through UV nanoimprint lithography with the fabricated flexible PVC template, highly ordered nano-sphere array pattern was imprinted on curved substrates with high fidelity.

Large Area Nanostructure Fabrication by Laser Interference Lithography (레이저 간섭 리소그래피를 이용한 대면적 나노 구조체 제작)

  • Jeong, Il Gyu;Kim, Jongseok;Hahn, Jae Won;Lee, Sung Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • One dimensional and two dimensional nano patterns were fabricated on a 4-inch substrate by Laser Interference Lithography (LIL). Mach-Zehnder interferometer was setup to obtain the interference patterns and adjusted the pattern sizes with change of incident angle. We could obtain a periodic structure with a period of 440 nm using 266 nm laser, and demonstrated a pattern size with $293{\pm}25nm$ over a 4-inch substrate.

A Numerical Analysis of Polymer Flow in Thermal Nanoimprint Lithography

  • Kim, Nam-Woong;Kim, Kug-Weon;Lee, Woo-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.29-34
    • /
    • 2010
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost effective and high throughput nanofabrication. To successfully imprint a nanometer scale patterns, the understanding of the mechanism in nanoimprint forming is essential. In this paper, a numerical analysis of polymer flow in thermal NIL was performed. First, a finite element model of the periodic mold structure with prescribed boundary conditions was established. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the polymer flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure for constant imprinting velocity in thermal NIL were obtained. The velocity field is significant because it can directly describe the mode of the polymer deformation, which is the key role to determine the mechanism of nanoimprint forming. Effects of different mold shapes and various thicknesses of polymer resist were also investigated.

Development of Micro-Nano Plotting Mechanism using Electrostrictive Polymer (Electrostrictive Polymer를 이용한 마이크로-나노 플로터 메커니즘 개발)

  • 류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.656-659
    • /
    • 2003
  • Although Hereafter a mass production will claim for patterning nano sized thickness or line in micro-nano industry. existent lithography fabrication has many usable fields, it has complex fabrication steps, expensive values and row work rates. Development of Dip-pen type nano plotter using polymer actuator can construct row cost mass production system because it will change existent lithography fabrication more simple and easy.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

Advanced Nanoimprinting Material for Liquid Crystal Alignment

  • Gwag, Jin-Seog;Oh-e, Masahito;Yoneya, Makoto;Yokoyama, Hiroshi;Satou, H.;Itami, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.534-537
    • /
    • 2007
  • To promote liquid crystal application of nanoimprint lithography, a polymer with new concept is proposed. The material consists of a polyamic acid for good LC alignment and an epoxy resin for good imprinting. The result of sum-frequency generation (SFG) vibrational spectroscopy proves that this material is a functionally gradient material. This material shows excellent capability as a nanoimprinting material as well as an LC alignment layer.

  • PDF

Three Dimensional Molecular Dynamics Simulation of Nano-Lithography Process for Fabrication of Nanocomponents in Micro Electro Mechanical Systems (MEMS) Applications (MEMS 부품 제조를 위한 나노 리소그래피 공정의 3차원 분자동력학 해석)

  • Kim, Young-Suk;Lee, Seung-Sub;Na, Kyoung-Hoan;Son, Hyun-Sung;Kim, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1754-1761
    • /
    • 2003
  • The atomic force microscopy (AFM) based lithographic technique has been used directly to machine material surface and fabricate nano components in MEMS (micro electro mechanical system). In this paper, three-dimensional molecular dynamics (MD) simulations have been conducted to evaluate the characteristic of deformation process at atomistic scale for nano-lithography process. Effects of specific combinations of crystal orientations and cutting directions on the nature of atomistic deformation were investigated. The interatomic force between diamond tool and workpiece of copper material was assumed to be derived from the Morse potential function. The variation of tool geometry and cutting depth was also evaluated and the effect on machinability was investigated. The result of the simulation shows that crystal plane and cutting direction significantly influenced the variation of the cutting forces and the nature of deformation ahead of the tool as well as the surface deformation of the machined surface.