• 제목/요약/키워드: Lithium ion secondary battery

검색결과 212건 처리시간 0.031초

2차 전지용 $LiMnO_{2}$ 활물질 합성의 전기화학적 특성과 평가 (Electrochemical properties and Estimation of $LiMnO_{2}$ Active Material Synthesis for Secondary Batteries)

  • 위성동;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.210-215
    • /
    • 2002
  • This thesis is contents on the crystal grown by the solide phase method at $925^{\circ}C$ with orthorhombic structure that $LiMnO_{2}$ active material synthesised with precurse $Mn_{2}O_{3}$ and $LiOH.H_{2}O$ material to get three voltage level. The porosity analysis of the grown crystal in secondary batteries $LiMnO_{2}$ thin film is $1.323E+02\AA$ of the average pore diameter of powder particles and its structure to be taken the pore diameter was prepared. Adding voltage area to get properties of charge and discharge of which experiment result of $LiMnO_{2}$ thin film area 2.2V~4.3V, current and scan speed were 0.1mAh/g and $0.2mV/cm^{2}$ respectively, and properties of the charge and discharge to be got optimum experiment condition parameter and density rate of Li for analyze that unit discharge capacity with metal properties is 87mAh/g was 96.9[ppm] at 670.784[nm] wavelength, and density rate of Mn analyzed 837[ppm] at 257.610[nm]. It can be estimated the quality of thin film that wrong cell reject from the bottle of electrolyte. The results of SEM and XRD were the same that of original researchers.

  • PDF

Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성 (The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2)

  • 양수빈;유기원;장병찬;손종태
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.149-155
    • /
    • 2014
  • 본 연구에서는 리튬 이차전지의 양극 재료인 $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$를 공침법(Co-precipitation)으로 전구체를 합성 하였고, 철(Fe)을 도핑 함으로써 양극 활물질을 합성하였다. 합성된 양극 활물질을 시차주사현미경 (SEM, Scanning electron microscope)과 X선-회절분석(XRD, X-ray diffraction)으로 분석하였다. X선-회절분석 결과 철(Fe)을 도핑 함으로써 a축과 c축이 증가하였고, $I_{(003)}/I_{(104)}$의 비가 증가하는 것과 $I_{(006)}+I_{(102)}/I_{(101)}$비가 작아지는 것을 통해 구조적 안정성이 증가하는 것을 확인했다. 전기화학적 특성 측정 결과 사이클 특성이 향상되었고, 임피던스 측정 결과 전하 이동 저항($R_{ct}$) 값이 낮아짐을 통해 전기화학적 분석 결과에서도 철(Fe)을 도핑 하였을 때 개선 된 특성을 나타내었다. 특히, 고온 조건에서 사이클 특성이 개선되는 것을 확인 하였는데, 이는 구조적 안정성이 사이클 특성에 기여하였기 때문이다.

2차전지 용액인 DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate)계의 연소특성치 측정 및 예측 (Measurement and Prediction of Combustion Characteristics of DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate) for Secondary Battery Solutions)

  • 장유선;장유리;최재준;전덕재;김용구;하동명
    • 한국안전학회지
    • /
    • 제38권5호
    • /
    • pp.8-14
    • /
    • 2023
  • Lithium ions can induce the thermal runaway phenomenon and lead to reignition due to electrical, mechanical, and environmental factors such as high temperature, smoke generation, explosions, or flames, which is extremely likely to create safety concerns. Therefore, one of the ways to improve the flame retardancy of the electrolyte is to use a flame-retardant additive. Comparing the associated characteristic value of existing substances with the required experimental value, it was found that these values were either considerably different or were not documented. It is vital to know a substance's combustion characteristic values, flash point, explosion limit, and autoignition temperature (AIT) as well as its combustion characteristics before using it. In this research, the flash point and AIT of materials were measured by mixing a highly volatile and flammable substance, diethyl carbonate (DEC), with flame-retardant dimethyl methylphosphonate (DMMP). The flash point of DEC, which is a pure substance, was 29℃, and that for DMMP was 65℃. Further, the lower explosion limit calculated using the measured flash point of DEC was 1.79 Vol.%, while that for DMMP was 0.79 Vol.%. The AIT was 410℃ and 390℃ for DEC and DMMP, respectively. In particular, since the AIT of DMMP has not been discussed in any previous study, it is necessary to ensure safety through experimental values. In this study, the experimental and regression analysis revealed that the average absolute deviation (ADD) for the flash point of the DEC+DMMP DEC+DMMP system is 0.58 sec and that the flash point tends to increase according to changes in the composition employed. It also revealed that the AAD for the AIT of the mixture was 3.17 sec and that the AIT tended to decrease and then increase based on changes in the composition.

화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극 (Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries)

  • 김해빈;이평우;이동근;오지선;류지헌
    • 전기화학회지
    • /
    • 제22권1호
    • /
    • pp.36-42
    • /
    • 2019
  • 두께가 $52{\mu}m$의 주석필름을 고농도의 질산을 사용한 화학적 식각과정을 거쳐서 리튬이온 이차전지용 고용량 음극인 다공성 주석후막을 제조하였다. 다공성 주석필름은 반응면적이 증가하게 되어 리튬과의 합금화 반응에 대한 과전압이 감소하였으며, 동시에 충방전 시의 부피변화에 대응할 수 있는 공간이 확보되었다. 또한, 이러한 다공성 주석후막 전극은 바인더 및 도전재의 사용이 필요하지 않기 때문에 실질적으로 더욱 큰 에너지 밀도의 구현이 가능하다. 식각용액에서의 질산농도가 증가할 수록 주석필름의 식각되는 정도가 증가하여 주석의 무게와 두께가 더욱 감소하였다. 3 M 농도 이상의 질산에서 주석필름의 식각이 효과적으로 진행되었으나, 5 M 농도에서는 식각속도가 더욱 증가하여 60초 내에 대부분의 주석이 용출되어 회수할 수 없었다. 4 M 농도의 질산용액에서 식각한 경우에는 두께는 40.3%가 감소하며 무게는 48.9%가 감소된 다공성 구조가 형성되었다. 주석필름의 식각되는 정도가 증가함에 따라 전기화학적 활성이 증가하게 되어 리튬저장에 대한 가역용량이 증가하였으며, 4 M 농도에서 식각한 주석필름의 경우에는 650 mAh/g의 가역용량을 나타내었으며, 안정적인 사이클 특성을 나타내어 주석분말을 사용하여 기존의 전극제조 방법으로 제조한 경우보다 향상된 사이클 성능을 나타내었다.

저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향 (Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries)

  • 황태경;김지홍;임지선;강석창
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.83-90
    • /
    • 2021
  • 본 연구에서는 저온 열처리 탄소의 물리·화학적 특성이 이차전지 음극재로서의 전기화학적 거동에 미치는 영향에 대하여 고찰하였다. 석유계 핏치의 코크스화를 위하여 600 ℃ 열처리를 수행하였으며 제조된 코크스는 700~1500 ℃로 탄화 온도를 달리하여 저온 열처리 탄소 음극재로 제조되었다. 탄소 음극재의 물리 화학적 특성은 N2 흡·탈착 등온선, X-ray diffraction (XRD), 라만 분광(Raman spectroscopy), 원소 분석 등을 통하여 확인하였으며,저온 열처리 탄소의 음극 특성은 반쪽 전지를 통한 용량, 초기 쿨롱 효율(ICE, initial Coulomb efficiency), 율속, 수명 등의 전기화학적 특성을 통하여 고찰하였다. 저온 열처리 탄소의 결정 구조는 1500 ℃ 이하에서 결정자의 크기와 진밀도가 증가하였으며 비표면적은 감소하였다. 저온 열처리 탄소의 물리화학적 특성 변화에 따라 음극재의 전기화학 특성이 변화하였는데 수명 특성은 H/C 원소 비, 초기 쿨롱 효율은 비표면적, 율속 특성은 진밀도의 특성에 기인하는 것으로 판단되었다.

BF3LiMA를 단량체로 하는 고체 고분자전해질 합성과 전기화학적 특성 (Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer)

  • 김경찬;류상욱
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.208-213
    • /
    • 2011
  • 합성된 $BF_3LiMA$ 리튬염을 단량체로 사용하는 고체 고분자전해질을 제조하고 $BF_3LiMA$의 농도가 이온전도도에 미치는 영향 및 전기화학적 안정성을 교류임피던스 측정법과 선형전위주사법을 통하여 평가하였다. 그 결과 $BF_3LiMA$가 12.9 wt%인 고체 고분자전해질에서 $7.71{\times}10^{-6}S\;cm^{-1}$의 가장 높은 $25^{\circ}C$ 이온전도도가 관찰되었으며 이 값을 전후로 이온전도도는 다소 감소하는 경향이 나타났다. 이러한 결과는 저농도의 $BF_3LiMA$에서 발생할 수 있는 리튬염의 부족과 고농도의 $BF_3LiMA$에서는 발생할 수 있는 고분자기질의 유동성 감소가 원인으로 해석된다. 또한 $BF_3LiMA$ 기반의 고체 고분자전해질은 음이온이 고정되어 있는 자기-도핑형 계열로서 $60^{\circ}C$에서 6.0 V까지 우수한 전기화학적 안정성을 보여주었다.

가교결합형 poly(POEM-co-AMPSLi-co-GMA) 전해질의 합성과 물리화학적 특성 (Synthesis of Crosslinked Poly(POEM-co-AMPSLi-co-GMA) Electrolytes and Physicochemical Properties)

  • 최다인;류상욱
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.65-70
    • /
    • 2014
  • 본 실험에서는 다양한 조성의 AMPS, POEM 및 GMA를 함유하는 공중합체를 합성하고, AMPS의 술폰산기와 $Li_2CO_3$와의 산염기 반응 및 에폭시기의 가교반응을 유도하여 가교결합된 poly(POEM-co-AMPSLi-co-GMA) 전해질을 제조하였다. POEM의 결정융점은 AMPS 및 POEM의 몰분율에 따라 변화되는 특징을 관찰할 수 있었으며, 리튬이온이 도입된 이후 대체적으로 감소되는 경향이 나타났다. 가교된 고분자의 이온전도도는 GMA의 함량이 증가할수록 다소 감소되는 결과가 나타났지만, 16 mol%까지는 $1.0{\times}10^{-6}S\;cm^{-1}$ 이상의 값을 보여주었다. 특히, 자기-도핑형 전해질임에도 불구하고 2 mol%에서 최대 $4.08{\times}10^{-6}S\;cm^{-1}$의 높은 상온이온전도도가 얻어졌으며, 상온에서 6 V까지 우수한 전기화학적 안정성을 보여주었다. 또한 가교된 고분자전해질은 필름성형이 가능하며, 0.11 MPa의 탄성계수 및 270%의 변형율을 보여주었다.

젖산과 옥살산을 이용한 폐 이차 리튬이온 전지 양극 활물질로부터 희유금속들의 회수 (Recovery of Rare Metals from the Waste Secondary Lithium Ion Battery Cathode Active Materials Using Lactic Acid and Oxalic acid)

  • 김연정;한지선;최식영;오인경;홍용표;유건상
    • 대한화학회지
    • /
    • 제63권6호
    • /
    • pp.446-452
    • /
    • 2019
  • 젖산을 이용하여 안전하게 양극활물질에 있는 Co, Mn, Ni을 침출할 수 있는 방법을 개발하였다. 양극활물질을 젖산으로 침출 시켰을 때, 젖산의 농도는 1N과 4 N 이상에서 보다는 2 N에서 가장 높은 효율을 보였다. 양극활물질을 단계적으로 젖산 용액에 첨가 하였을 때, 최대 용해도는 2 N의 젖산 용액에서 1 L 당 30 g이었다. 젖산 용액에 옥살산을 첨가하였고 희유금속들은 1 L 당 4 g에서 가장 경제적인 회수율을 보였다. 본 연구를 바탕으로 해서, 양극활물질로부터 희유금속들을 회수하기 위한 최적의 조건은 무게비로 옥살산과 양극활물질이 7 : 1이라는 것을 확인할 수 있었다. 첨가하여, 옥살산에 의해서 생성된 침전물은 Co, Ni, Mn 3성분이 결합되어 있는 다핵 결정성 물질이었다.

Grafting-onto법에 의한 poly(MMA-co-PEGMA) 전해질의 합성과 이온전도도에 대한 조성의 영향 (Synthesis of Poly(MMA-co-PEGMA) Electrolytes by Grafting-onto Method and Effect of Composition on Ionic Conductivities)

  • 이주형;류상욱
    • 전기화학회지
    • /
    • 제16권4호
    • /
    • pp.198-203
    • /
    • 2013
  • 본 실험에서는 MMA와 tBMA의 공중합체를 합성하고, tert-butyl 그룹의 가수분해를 선택적으로 유도하여 poly(MMA-co-MA)를 제조하였다. 또한 말단에 에폭시기를 함유한 다양한 분자량의 PEO와 MA와의 grafting-onto 커플링 반응을 통해 같은 주사슬을 가지지만 부사슬의 길이가 다른 poly(MMA-co-PEGMA)를 합성하여 조성이 이온전도도에 미치는 영향을 평가하였다. AC-impedance로 측정한 상온 이온전도도는 MMA의 몰분율이 82%에서 $5.11{\times}10^{-8}Scm^{-1}$의 값이 얻어진 반면, 48%에서는 $1.88{\times}10^{-6}Scm^{-1}$로서 많은 PEGMA에서 높게 관찰되었다. 또한 에폭시기를 함유한 PEO의 분자량에 따라 이온전도도의 차이가 발생하는데, grafting-onto 법의 입체적 장애가 원인으로 고려되었다. 한편, 합성된 poly(MMA-co-PEGMA) 고분자 전해질은 상온에서 6V까지 우수한 전기화학적 안정성을 보여주었다.

리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성 (Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries)

  • 지미정;권용진;김은경;박태진;정성헌;최병현
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.