Browse > Article
http://dx.doi.org/10.14478/ace.2020.1100

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries  

Whang, Tae Kyung (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Kim, Ji Hong (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Im, Ji Sun (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Kang, Seok Chang (C1 Gas & Carbon Convergent Research, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 83-90 More about this Journal
Abstract
In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.
Keywords
Petroleum pitch; Low temperature heated carbon; Lithium ion battery; Material characteristic; Electrochemical performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. R. Ammar, N. Galy, J. N. Rouzaud, N. Toulhoat, C. E. Vaudey, P. Simon, and N. Moncoffre, Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing, Carbon, 95, 364-373 (2015).   DOI
2 D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 161, 359-372 (2020).   DOI
3 H. Marsh and J. Griffiths, New processes and new applications, Ext. Abst. of International Symposium on Carbon, Toyohashi, Japan (1982).
4 M. Inagaki, and K Feiyu, Carbon Materials Science and Engineering, Tsinghua Univ. Press., 37-40, Beijing, China (2006).
5 P. L. Walker and P. A. Thrower, Chemistry and Physics of Carbon, 149-151, CRC Press, Florida, USA (1993).
6 I. Mochida, C. H. Ku, S. H. Yoon, and Y. Korai, Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries, J. Power Sources, 75, 214-222 (1998).   DOI
7 B. H. Kim, J. H. Kim, J. G. Kim, and J. S. Im, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem., 45, 99-104 (2017).   DOI
8 T. Ishii, Y. Kaburagi, A. Yoshida, Y. Hishiyama, H. Oka, N. Setoyama, and T. Kyotani, Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures, Carbon, 125, 146-155 (2017).   DOI
9 M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, J. Phys. Chem., 117, 1257-1267 (2013).
10 Y. Nishi, Lithium ion secondary batteries; Past 10 years and the future, J. Power Sources, 100, 101-106 (2001).   DOI
11 H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, and S. Z. Qiao, Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage, Adv. Energy Mater., 21, 970-975 (2012).
12 H. Hu and G. Chen, Electrochemically modified graphite nano-sheets and their nanocomposite films with poly(vinyl alcohol), Polym. Compos, 31, 1770-1775 (2010).   DOI
13 Y. J. Han, Y. J. Kwon, J. U. Lee, and J. S. Im, Recent progress on carbon materials for lithium-ion rechargeable batteries, Polym. Sci. Tech., 28, 195-200 (2017).
14 K. Zaghib, F. Brochu, A. Guerfi, and K. Kinoshita, Effect of particle size on lithium intercalation rates in natural graphite, J. Power Source, 103, 140-160 (2001).   DOI
15 G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization, J. Appl. Polym. Sci., 82, 2506-2513 (2001).   DOI
16 J. H. Lee, S. K. Lee, U. Y. Paik, and Y. M. Choi, Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance, J. Power Sources, 147, 249-255 (2005).   DOI
17 M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 26, 725-763 (1998).
18 H. Azuma, H. Imoto, S. I. Yamada, and K. Sekai, Advanced carbon anode materials for lithium ion cells, J. Power Sources, 81, 1-7 (1999).   DOI
19 Z. Jiang, M. Alamgir, and K. M. Abraham, The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells, J. Electrochem. Soc., 142, 333-340 (1995).   DOI
20 Z. Cao, B. Li, and S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays, Adv. Mater., 31, 1-6 (2019).
21 J. Shim and K. A. Striebel, Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries, J. Power Sources, 119, 934-937 (2003).   DOI
22 P. Zhou and P. Papanek, High capacity carbon anode materials: Structure, hydrogen effect, and stability, J. Power Sources, 68, 296-300 (1997).   DOI
23 K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A mechanism of lithium storage in disordered carbons, Science, 264, 556-558. (1994).   DOI
24 Y. Liu, J. S. Xue, T. Zheng, and J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34, 193-200 (1996).   DOI
25 J. Robertson, Amorphous carbon, Adv. Phys., 35, 317-374 (1986).   DOI
26 Y. Li, L. Mu, Y. S. Hu, H. Li, L. Chen, and X. Huang, Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries, Energy Storage Mater., 2, 139-145 (2016).   DOI
27 Y. Li, Y. S. Hu, H. Li, L. Chen, and X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, J. Mater. Chem. A, 4, 96-104 (2016).   DOI
28 S. M. Jafari, M. Khosravi, and M. Mollazadeh, Nanoporous hard carbon microspheres as anode active material of lithium ion battery, Electrochim. Acta, 203, 9-20 (2016).   DOI
29 Y. Abe, T. Saito, and S. Kumagai, Effect of prelithiation process for hard carbon negative electrode on the rate and cycling behaviors of lithium-ion batteries, Batteries, 4, 1-16 (2018).
30 R. Vali, A. Janes, T. Thomberg, and E. Lust, Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries, Electrochim. Acta, 253, 536-544 (2017).   DOI
31 Y. Sato, K. Nagayama, Y. Sato, and T. Takamura, A promising active anode material of Li-ion battery for hybrid electric vehicle use, J. Power Sources, 189, 490-493 (2009).   DOI
32 R. Schaublin, J. Henry, and Y. Dai, Helium and point defect accumulation: (i) microstructure and mechanical behavior, C. R. Phys., 9, 389-400 (2008).   DOI
33 A. Claye and J. E. Fischer, Short-range order in disordered carbons: Where does the Li go?, Electrochim. Acta, 45, 107-120 (1999).   DOI
34 K. Leung and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 12, 6583-6586 (2010).   DOI
35 T. Ishii, S. Kashihara, Y. Hoshikawa, J. I. Ozaki, N. Kannari, K. Takai, T. Enoki, and T. Kyotani, A quantitative analysis of carbon edge sites and an estimation of graphene sheet size in high-temperature treated, non-porous carbons, Carbon, 80, 135-145 (2014).   DOI
36 K. kaneko and C. Ishii, Superhigh surface area determination of microporous solids, Colloid Surf., 67, 203-212 (1992).   DOI
37 S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016).   DOI
38 T. Zheng, A. S. Gozdz, and G. G. Amatucci, Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures, J. Electrochem. Soc., 146, 4014-4018 (1999).   DOI
39 C. Heubner, M. Schneider, and A. Michaelis, Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries, Adv. Energy Mater., 10, 1-7 (2020).
40 D. W. Chung, M. Ebner, D. R. Ely, V. Wood, and R. E. Garcia, Validity of the Bruggeman relation for porous electrodes, Model. Simul. Mater. Sci. Eng., 21, 1-17 (2013).
41 A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput. Mater., 4, 1-26 (2018).   DOI
42 D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly, and P. J. Klar, Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy, Carbon, 161, 359-372 (2020).   DOI
43 M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 26, 725-763 (1998).
44 P. Bai, J. Li, F. R. Brushett, and M. Z.Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221-3229 (2016).   DOI
45 T. Zheng, W. R. McKinnon, and J. R. Dahn, Hysteresis during lithium insertion in hydrogen-containing carbons, J. Electrochem. Soc., 143, 2137-2145 (1996).   DOI
46 G. Savage, Carbon-Carbon Composites, 2nd, 1-10, Woodhead Publishing, Sawston, England (1993).
47 N. N. Sinha, T. H. Marks, H. M. Dahn, A. J. Smith, J. C. Burns, D. J. Coyle, J. J. Dahn, and J. R. Dahn, The rate of active lithium loss from a soft carbon negative electrode as a function of temperature, time and electrode potential, J. Electrochem. Soc., 159, 1672-1681 (2012).
48 S. E. Lee, J. H. Kim, Y. S. Lee, B. C. Bai, and J. S. Im, Effect of crystallinity and particle size on coke-based anode for lithium ion batteries, Carbon Lett., 30, 545-553 (2020).   DOI
49 N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Large hysteresis during lithium insertion into and extraction from high-capacity disordered carbons, J. Electrochem. Soc., 145, 478-482 (1998).   DOI
50 S. Otani, On the carbon fiber from the molten pyrolysis products, Carbon, 3, 31-34 (1965).   DOI
51 J. Tebo, McGraw-Hill Encyclopedia of Chemistry, 2nd, 455-459, McGraw-Hill Education, NY, USA (1993).
52 K. I. Kamiya, M. Inagaki, M. Mizutani, and T. Noda, Effect of pressure on graphitization of carbon, Bull. Chem. Soc. Jpn., 41, 2169-2172. (1968).   DOI
53 A. Oberlin, J. N. Rouzaud, and J. Goma, Techniques d'etude des structures et textures (microtextures) des materiaux carbones, J. Chim. Phys., 81, 701-710 (1984).   DOI