• 제목/요약/키워드: Lithium intercalation

검색결과 110건 처리시간 0.018초

리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도 (Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery)

  • 김대현;김대희;서화일;김영철
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.290-294
    • /
    • 2010
  • 본 연구는 밀도 범함수 이론을 이용하여 Li이온전지에 사용되는 Li코발트 산화물에서의 Li이온 삽입 전압과 전도에 관한 것이다. Li이온은 Li코발트 산화물 원자구조의 각 층을 1개씩 채우거나 한 층을 다 채우고 다음 층을 채울 수 있다. 평균 삽입 전압은 3.48V로 동일하나, 전자가 후자보다 더 유리하였다. 격자상수 c는 Li농도가 0.25보다 작을 때는 증가하였으나, 0.25보다 클 때는 감소하였다. Li농도가 증가하면, Li코발트 산화물에서의 Li이온 전도를 위한 에너지 장벽은 증가하였다. Li이온전지가 방전 중 출력 전압이 낮아지는 현상은 Li농도 증가에 따른 삽입 전압의 감소와 전도 에너지 장벽의 증가로 설명할 수 있었다.

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • 전기화학회지
    • /
    • 제2권1호
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입 (Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation)

  • 이유신;정순기;이헌영;김지수
    • 전기화학회지
    • /
    • 제13권3호
    • /
    • pp.186-192
    • /
    • 2010
  • 흑연과 1-buthyl-2,3-dimethylimidazolium(BDMI)계 이온성 액체의 계면 반응을 이해하기 위하여 lithium bis(fluorosulfonyl)imide(LiTFSI)가 용해된 BDMI-TFSI 용액 중에서 전기화학 원자간력 현미경(electrochemical atomic force microscopy, ECAFM)을 이용하여 순환 전압전류법 전후에 있어서의 고배향성 열분해 흑연(highly oriented pyrolytic graphite, HOPG)의 표면을 in-situ로 관찰하였다. HOPG 전극에서 리튬의 가역적인 삽입과 탈리반응은 진행되지 않았으며, $BDMI^+$ 양이온의 삽입에 의한 blister의 형성 및 그라펜 층의 파괴만이 관찰되었다. 한편, $BDMI^+$ 양이온의 삽입 반응은 농도가 4.90 mol/kg인 LiTFSI-propylene carbonate(PC)를 15 wt% 함유하고 있는 BDMI-TFSI계에서는 일어나지 않았으며, 이 경우에는 가역적인 리튬의 삽입과 탈리반응이 진행 되었다. ECAFM 결과는 고농도의 PC계 용액이 solid electrolyte interface(SEI)를 형성함으로 인해 $BDMI^+$ 양이온의 삽입을 막는 매우 효과적인 첨가제임을 나타내었다.

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong;Park, Dong-Won;Jung, Hwan-Jung;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권1호
    • /
    • pp.82-86
    • /
    • 2006
  • Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.79-85
    • /
    • 2002
  • 열역학적 관점에서 몬테 카를로 방법의 전기화학적 리튬 인터칼레이션에로의 응용에 대하여 다루었다. 우선 통계 열역학의 앙상블, Ising 및 lattice gas 모델의 기본 개념을 간단히 소개하였고, lattice gas 모델에 근거한 몬테카를로 방법을 사용하여 전이금속 산화물내로의 리튬 인터칼레이션의 열역학을 해석하였다. 특히 $LiMn_2O_4$전극에 대해 전극 포텐셜 곡선과 리튬 이온의 부분 몰 내부에너지와 엔트로피와 같은 열역학적 특성을 다루었고, 이로부터 리튬 인터칼레이션의 전기화학분야에서 몬테 카를로 방법의 유용성을 확인하였다

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

리튬-흑연 층간 화합물의 합성 및 특성 분석 (Synthesis and Characterization of Lithium-Graphite Intercalation Compounds)

  • 홍승현;김태영;서광석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.227-227
    • /
    • 2010
  • The intercalation chemistry of graphite presents an attractive route to obtain few-layered graphene platelets based on the expanded interlayer spacing. We report that the lithium can be intercalated into the graphite in a controllable manner by adjusting the variables such as temperature, pressure, and reaction time. From the X-ray diffraction experiments, the lithium-graphite intercalaltion compounds (Li-GICs) can be produced as the first stage compounds ($LiC_6$), the second-stage compounds ($LiC_{12}$), and the mixtures, which is most likely to be dependent on the temperature and reaction time. Since these Li-GICs are expected to facilitate the exfoliation of graphite, we investigated the feasibility of Li-GICs as a effective precursors for the generation of single-or few-layered graphite nano-platelets.

  • PDF

A Study on the Initial Irreversible Capacity of Lithium Intercalation Using Gradually Increasing State of Charge

  • Doh, Chil-Hoon;Jin, Bong-Soo;Park, Chul-Wan;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.189-193
    • /
    • 2003
  • Initial irreversible capacity (IIC) can be defined by means of the initial intercalation Ah efficiency (IIE) and the initial irreversible specific capacity at the surface (IICs) with the linear-fit range of the intercalation so as to precisely express the irreversibility of an electrode-electrolyte system. Their relationship was IIC = Qc - Q$_{D}$ = (IIE$^{-1}$ - 1) Q$_{D}$ + IICs in the linear-fit range of IIE. Here, Qc and Qd signify charge and discharge capacity, respectively, based on a complete lithium ion battery cell. Charge indicates lithium insertion to carbon anode. Two terms of IIE and IICs depended on the types of active materials and compositions of the electrode and electrolyte but did not change with charging state. In an ideal electrode-electrolyte system, IIE and IICs would be 100%, 0 mAh/g for the electrode and mAh for the cell, respectively. These properties can be easily obtained by the Gradual Increasing of State of Charge (GISOC).OC).

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.