Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.4.290

Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery  

Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.4, 2010 , pp. 290-294 More about this Journal
Abstract
We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.
Keywords
Lithium ion battery; Lithium cobalt oxide; Intercalation voltage; Conduction, Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths" J. Chem. Phys., 128, 134106 (2008).   DOI
2 T. Ohzuku and A. Ueda, "Solid-State Redox Reactions of $LiCoO_2$ (R3m) for 4 Volt Secondary Lithium Cells" J. Electrochem. Soc., 141, 2972 (1994).   DOI
3 J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, "A Review of Processes and Technologies for the Recycling of Lithium-ion Secondary Batteries" J. Power Sources, 177, 512 (2008).   DOI
4 K. S. Kang and G. Ceder, "Factors that Affect Li Mobility in Layered Lithium Transition Metal Oxides" Phy. Rev. B, 74, 094105-1 (2006).   DOI
5 J. Hafner, C. Wolverton, and G. Ceder, "Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research" MRS Bulletin, 31, 659 (2006).   DOI
6 G. Ceder, M. Doyle, P. Arora, and Y. Fuentes, "Computational Modeling and Simulation for Rechargeable Batteries" MRS Bulletin, 27, 619 (2002).   DOI
7 C. Wolverton and A. Zunger, "First-principles Theory of Cation and Intercalation Ordering in $Li_xCoO_2$" J. Power Sources, 81-82, 680 (1999).   DOI
8 A. I. Landa, C. C. Chang, P. N. Kumta, L. Vitos, and I. A. Abrikosov, "Phase Stability of $Li(Mn_{100-x}Co_x)O_2 $Oxides: An Ab Initio Study" Solid State Ionics, 149, 209 (2002).   DOI
9 D. Kramer and G. Ceder, "Tailoring the Morphology of $LiCoO_2$: A First Principles Study" Chem. Mater., 21, 3799 (2009).   DOI
10 M. K. Aydinol, A. F. Kohan, and G. Ceder, "Ab Initio Calculation of the Intercalation Voltage of Lithiumtransition- metal Oxide Electrodes for Rechargeable Batteries" J. Power Sources, 68, 664 (1997).   DOI
11 A. Van der Ven and G. Ceder, "Lithium Diffusion Mechanisms in Layered Intercalstion Compounds" J. Power Sources, 97-98, 529 (2001).   DOI
12 G. Kresse and J. Hafner, "Ab Initio Molecular Dynamics for Liquid Metals" Phys. Rev. B, 47, 558 (1993)   DOI
13 K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries" Science, 311, 977 (2006).   DOI
14 S. Shi, C. Ouyang, M. Lei, and W. Tang, "Effect of Mgdoping on the Structural and Electronic Properties of $LiCoO_2$: A First-principles Investigation" J. Power Sources, 171, 908 (2007).   DOI
15 M. Okubo, E. Hosono, J. D. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, "Nanosize Effect on High-Rate Li-ion Intercalation in $LiCoO_2$ Electrode" J. Am. Chem. Soc., 129, 7444 (2007).   DOI
16 Y. Takahashi, N. Kijima, K. Dokko, M. Nishizawa, I. Uchida, and J. Akimoto, "Structure and Electron Density Analysis of Electrochemically and Chemically Delithiated $LiCoO_2$ Single Crystals" J. Solid State Chem., 180, 313 (2007).   DOI
17 G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method" Phys. Rev. B, 59, 1758 (1999).   DOI
18 G. Kresse and J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium" Phys. Rev. B, 49, 14251 (1994).   DOI
19 G. Kresse and J. Furthuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-wave BASIS Set" Comput. Mat. Sci., 6, 15 (1996).   DOI
20 G. Kresse and J. Furthuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations using a Planewave Basis Set" Phys. Rev. B, 54, 11169 (1996).   DOI
21 D. Vanderbilt, "Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism" Phys. Rev. B, 41, 7892 (1990).   DOI
22 D. M. Wood and A. Zunger, "A New Method for Diagonalising Large Matrices" J. Phys. A, 18, 1343 (1985).   DOI
23 P. Pulay, "Convergence Acceleration in Iterative Sequences: The Case of SCF Iteration" Chem. Phys. Lett., 73, 393 (1980).   DOI
24 Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O’KEEFE, "Atomic Resolution of Lithium Ions in $LiCoO_2$" Nature Materials, 2, 464 (2003).   DOI
25 Y. Shao-Horn, S. A. Hackney, A. J. Kahaian, and M. M. Thackeray, "Structural Stability of $LiCoO_2$ at 400oC" J. Solid State Chem., 168, 60 (2002).   DOI