• 제목/요약/키워드: Lithium Ion Battery

Search Result 944, Processing Time 0.032 seconds

Electrochemical Characteristics of Carbon-coated LiFePO4 as a Cathode Material for Lithium Ion Secondary Batteries

  • Shin, Ho-Chul;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.168-171
    • /
    • 2005
  • The electrochemical properties of $LiFePO_4$ as a cathode for Li-ion batteries were improved by incorporating conductive carbon into the $LiFePO_4$. X-ray diffraction analysis and SEM observations revealed that the carbon-coated $LiFePO_4$ consisted of fine single crystalline particles, which were smaller than the bare $LiFePO_4$. The electrochemical performance of the carbon-coated $LiFePO_4$ was tested under various conditions. The carbon-coated $LiFePO_4$ showed much better performance in terms of the discharge capacity and cycling stability than the bare $LiFePO_4$. The improved electrochemical performances were found to be attributed to the reduced particle size and enhanced electrical conductivity of the $LiFePO_4$ by the carbon.

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

Continuous Time and Discrete Time State Equation Analysis about Electrical Equivalent Circuit Model for Lithium-Ion Battery (리튬 이온 전지의 전기적 등가 회로에 관한 연속시간 및 이산시간 상태방정식 연구)

  • Han, Seungyun;Park, Jinhyeong;Park, Seongyun;Kim, Seungwoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • Estimating the accurate internal state of lithium ion batteries to increase their safety and efficiency is crucial. Various algorithms are used to estimate the internal state of a lithium ion battery, such as the extended Kalman filter and sliding mode observer. A state-space model is essential in using algorithms to estimate the internal state of a battery. Two principal methods are used to express the state-space model, namely, continuous time and discrete time. In this work, the extended Kalman filter is employed to estimate the internal state of a battery. Moreover, this work presents and analyzes the estimation performance of algorithms consisting of a continuous time state-space model and a discrete time state-space model through static and dynamic profiles.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.623-628
    • /
    • 2006
  • Laser material processing is a very fast advancing technology for various industrial applications. because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment. battery case has changed over joint geometry from welding of side position to flat one. In the case of a electrolyte injection hole in order to seal it. welding is carried out after pressing Al ball. At this time. an eccentric degree. contact length and gap are worked as a major parameters. As improving the method of Al ball pressing. it was able to reduce an eccentricity. increase the contact length and decrease gap. As a results of a experiment. a sound weld bead shape and crack-free weld bead can be obtained.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.339-343
    • /
    • 2005
  • Laser material processing is a very fast growing technology for various industrial applications, because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment, battery case has changed over joint geometry from welding of side position to flat one. In case of a electrolyte injection hole in order to seal it, welding is carried out after pressing Al ball. At this time, an eccentric degree, contact length and gap are worked as a major parameters. As improving the method of Al ball pressing, it was able to reduce an eccentricity, increase the contact length and decrease gap. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained.

  • PDF

Analysis of the Secondary Battery Charge/Discharge System Using State Space Averaging Method (상태공간평균화법에 의한 2차전지 충방전 시스템의 해석)

  • Won, Hwa-Young;Chae, Soo-Yong;Lee, Hyoung-Ju;Kim, Hee-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.13-15
    • /
    • 2008
  • Charging or discharging secondary batteries such as a lithium-ion battery is essential in the stage of production and takes long time over two hours. And the charge/discharge system is operated with high switching frequency over several tens kHz. Therefore, to simulate such a system in the conventional way takes very long time and huge files are produced. Finally, the simulation would be unable with general PC class. In this paper, the lithium-ion battery charge/discharge system is analyzed by using state space averaging method. As a result, the simulation time is reduced dramatically and the charge/- discharge characteristics of the lithium-ion battery can be observed.

  • PDF

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Characteristics Analysis of Measurement Variables for Detecting Anomaly Signs of Thermal Runaway in Lithium-Ion Batteries (리튬이온 배터리의 열폭주 이상징후 감지를 위한 측정 변수 특성 분석)

  • LIM, BYUNG-JU;CHO, SUNG-HOON;LEE, GA-RAM;CHOI, SEOK-MIN;PARK, CHANG-DAE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • To detect anomaly signs of thermal runaway in advance, this study analyzed the signals from various sensors installed in lithium-ion batteries. The thermal runaway mechanism was analyzed, and measurement variables for anomalies of a battery cell were surface temperature, strain, and gas concentration. The changes and characteristics of three variables during the thermal runaway process were analyzed under the abuse environment: the overheat and the overcharge. In experiment, the thermal runaway of the battery proceeded in the initial developing stage, the outgassing stage, and the ignition stage. Analysis from the measured data indicated that the suitable variable to detect all stages of thermal runaway is the surface temperature of the battery, and surface strain is alternative.