Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.1.85

Characteristics Analysis of Measurement Variables for Detecting Anomaly Signs of Thermal Runaway in Lithium-Ion Batteries  

LIM, BYUNG-JU (Energy Systems Research Division, Korea Institute of Machinery and Materials)
CHO, SUNG-HOON (Energy Systems Research Division, Korea Institute of Machinery and Materials)
LEE, GA-RAM (Energy Systems Research Division, Korea Institute of Machinery and Materials)
CHOI, SEOK-MIN (Energy Systems Research Division, Korea Institute of Machinery and Materials)
PARK, CHANG-DAE (Energy Systems Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.1, 2022 , pp. 85-94 More about this Journal
Abstract
To detect anomaly signs of thermal runaway in advance, this study analyzed the signals from various sensors installed in lithium-ion batteries. The thermal runaway mechanism was analyzed, and measurement variables for anomalies of a battery cell were surface temperature, strain, and gas concentration. The changes and characteristics of three variables during the thermal runaway process were analyzed under the abuse environment: the overheat and the overcharge. In experiment, the thermal runaway of the battery proceeded in the initial developing stage, the outgassing stage, and the ignition stage. Analysis from the measured data indicated that the suitable variable to detect all stages of thermal runaway is the surface temperature of the battery, and surface strain is alternative.
Keywords
Thermal runaway; Lithium ion battery; Anomaly sign; Overcharge; Overheat; Pre-detection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C.H. Sim and H.S. Kim, "Basic investigation into the validity of thermal analysis of 18650 Li-ion battery pack using CFD Simulation'', Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 5, 2020, pp. 489-497. doi: https://doi.org/10.7316/KHNES.2020.31.5.489.   DOI
2 H. Yang, H. Bang, K. Amine, and J. Prakash, "Investigations of the exothermic reactions of natural graphite anode for Li-Ion batteries during thermal runaway", J. Electrochem. Soc, Vol. 152, No. 1, 2005, pp. A73-A79, doi: https://doi.org/10.1149/1.1836126.   DOI
3 I. Belharouak, D. Vissers, and K. Amine, "Thermal stability of the Li (Ni0.8Co0.15Al0.05) O2 cathode in the presence of cell components", J. Electrochem. Soc, Vol. 153, No. 11, 2006, pp. A2030-A2035, doi: https://doi.org/10.1149/1.2336994.   DOI
4 R. Guo, L. Lu, M. Ouyang, and X. Feng, "Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries", Sci. Rep, Vol. 6, 2016, pp. 1-9, doi: https://doi.org/10.1038/srep30248.   DOI
5 R. Spotnitz and J. Franklin, "Abuse behavior of high-power, lithium-ion cells", J. Power Sources, Vol. 113, No. 1, 2003, pp. 81-100, doi: https://doi.org/10.1016/S0378-7753(02)00488-3.   DOI
6 Q. Wang, J. Sun, X. Yao, and C. Chen, "Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries", J. Electrochem. Soc, Vol. 153, 2006, pp. A329-A333, doi: https://doi.org/10.1149/1.2139955.   DOI
7 D. Ren, X. Liu, X. Feng, L. Lu, M. Ouyang, J. Li, and X. He, "Mode-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components", Appl. Energy, Vol. 228, 2018, pp. 633-644, doi: https://doi.org/10.1016/j.apenergy.2018.06.126.   DOI
8 K. Xu, G. V. Zhuang, J. L. Allen, U. Lee, S. S. Zhang, P.N. Ross, and T.R. Jow, "Syntheses and characterization of lithium alkyl mono- and bicarbonates as components of surface films in Li-ion batteries", J. Phys. Chem. B, Vol. 110, No. 15, 2006, pp. 7708-7719, doi: https://doi.org/10.1021/jp0601522.   DOI
9 T. Inoue and K. Mukai, "Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: Accelerating rate calorimetry analyses with an all-inclusive microcell", Electrochem. Commun, Vol. 77, 2017, pp. 28-31, doi: https://doi.org/10.1016/j.elecom.2017.02.008.   DOI
10 P. Huang, Q. Wang, K. Li, P. Ping, and J. Sun, "The combustion behavior of large scale lithium titanate battery", Sci. Rep, Vol. 5, 2015, pp. 1-12, doi: https://doi.org/10.1038/srep07788.   DOI
11 X. Feng, J. Sun, M. Ouyang, X. He, L. Lu, X. Han, M. Fang, and H. Peng, "Characterization of large format lithium ion battery exposed to extremely high temperature", J. Power Sources, Vol. 272, 2014, pp. 457-467, doi: https://doi.org/10.1016/j.jpowsour.2014.08.094.   DOI
12 J.K. Lee and G.C. Park, "Battery protection method using gas sensor monitoring device", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 2, 2021, pp. 143-148. doi: https://doi.org/10.7316/KHNES.2021.32.2.143.   DOI
13 Z. Liao, S. Zhang, K. Li, G. Zhang, and T.G. Habetler, "A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries", J. Power Sources, Vol. 436, 2019, pp. 226879, doi: https://doi.org/10.1016/j.jpowsour.2019.226879.   DOI
14 C. Xu, X. Feng, W. Huang, Y. Duan, T. Chen, S. Gao, L. Lu, F. Jiang, and M. Ouyang, "Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry", J. Energy Storage, Vol. 31, 2020, pp. 101670, doi: https://doi.org/10.1016/j.est.2020.101670.   DOI
15 J. ichi Yamaki, H. Takatsuji, T. Kawamura, and M. Egashira, "Thermal stability of graphite anode with electrolyte in lithium-ion cells", Solid State Ionics, Vol. 148, No. 3, 2002, pp. 241-245, doi: https://doi.org/10.1016/S0167-2738(02)00060-7.   DOI
16 J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, D. Aurbach, and M. Schmidt, "The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions", J. Power Sources, Vol. 119-121, 2003, pp. 794-798, doi: https://doi.org/10.1016/S0378-7753(03)00255-6.   DOI
17 Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, "Thermal runaway caused fire and explosion of lithium ion battery", J. Power Sources, Vol. 208, 2012, pp. 210-224, doi: https://doi.org/10.1016/j.jpowsour.2012.02.038.   DOI
18 Q. Wang and J. Sun, "Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate", Mater. Lett, Vol. 61, No. 16, 2007, pp. 3338-3340, doi: https://doi.org/10.1016/j.matlet.2006.11.060.   DOI
19 J. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, and S. Okada, "Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode", J. Power Sources, Vol. 119-121, 2003, pp. 789-793. doi: https://doi.org/10.1016/S0378-7753(03)00254-4.   DOI