DOI QR코드

DOI QR Code

Characteristics Analysis of Measurement Variables for Detecting Anomaly Signs of Thermal Runaway in Lithium-Ion Batteries

리튬이온 배터리의 열폭주 이상징후 감지를 위한 측정 변수 특성 분석

  • LIM, BYUNG-JU (Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • CHO, SUNG-HOON (Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • LEE, GA-RAM (Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • CHOI, SEOK-MIN (Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • PARK, CHANG-DAE (Energy Systems Research Division, Korea Institute of Machinery and Materials)
  • 임병주 (한국기계연구원 에너지기계연구본부) ;
  • 조성훈 (한국기계연구원 에너지기계연구본부) ;
  • 이가람 (한국기계연구원 에너지기계연구본부) ;
  • 최석민 (한국기계연구원 에너지기계연구본부) ;
  • 박창대 (한국기계연구원 에너지기계연구본부)
  • Received : 2021.12.16
  • Accepted : 2022.01.27
  • Published : 2022.02.28

Abstract

To detect anomaly signs of thermal runaway in advance, this study analyzed the signals from various sensors installed in lithium-ion batteries. The thermal runaway mechanism was analyzed, and measurement variables for anomalies of a battery cell were surface temperature, strain, and gas concentration. The changes and characteristics of three variables during the thermal runaway process were analyzed under the abuse environment: the overheat and the overcharge. In experiment, the thermal runaway of the battery proceeded in the initial developing stage, the outgassing stage, and the ignition stage. Analysis from the measured data indicated that the suitable variable to detect all stages of thermal runaway is the surface temperature of the battery, and surface strain is alternative.

Keywords

Acknowledgement

본 연구는 2020년도 산업자원통상부의 재원으로 에너지기술개발사업의 지원을 받아 수행한 연구 과제입니다(과제번호: 20206900000020, 20203040010240).

References

  1. J.K. Lee and G.C. Park, "Battery protection method using gas sensor monitoring device", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 2, 2021, pp. 143-148. doi: https://doi.org/10.7316/KHNES.2021.32.2.143.
  2. C.H. Sim and H.S. Kim, "Basic investigation into the validity of thermal analysis of 18650 Li-ion battery pack using CFD Simulation'', Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 5, 2020, pp. 489-497. doi: https://doi.org/10.7316/KHNES.2020.31.5.489.
  3. Z. Liao, S. Zhang, K. Li, G. Zhang, and T.G. Habetler, "A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries", J. Power Sources, Vol. 436, 2019, pp. 226879, doi: https://doi.org/10.1016/j.jpowsour.2019.226879.
  4. C. Xu, X. Feng, W. Huang, Y. Duan, T. Chen, S. Gao, L. Lu, F. Jiang, and M. Ouyang, "Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry", J. Energy Storage, Vol. 31, 2020, pp. 101670, doi: https://doi.org/10.1016/j.est.2020.101670.
  5. D. Ren, X. Liu, X. Feng, L. Lu, M. Ouyang, J. Li, and X. He, "Mode-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components", Appl. Energy, Vol. 228, 2018, pp. 633-644, doi: https://doi.org/10.1016/j.apenergy.2018.06.126.
  6. X. Feng, J. Sun, M. Ouyang, X. He, L. Lu, X. Han, M. Fang, and H. Peng, "Characterization of large format lithium ion battery exposed to extremely high temperature", J. Power Sources, Vol. 272, 2014, pp. 457-467, doi: https://doi.org/10.1016/j.jpowsour.2014.08.094.
  7. H. Yang, H. Bang, K. Amine, and J. Prakash, "Investigations of the exothermic reactions of natural graphite anode for Li-Ion batteries during thermal runaway", J. Electrochem. Soc, Vol. 152, No. 1, 2005, pp. A73-A79, doi: https://doi.org/10.1149/1.1836126.
  8. J. ichi Yamaki, H. Takatsuji, T. Kawamura, and M. Egashira, "Thermal stability of graphite anode with electrolyte in lithium-ion cells", Solid State Ionics, Vol. 148, No. 3, 2002, pp. 241-245, doi: https://doi.org/10.1016/S0167-2738(02)00060-7.
  9. I. Belharouak, D. Vissers, and K. Amine, "Thermal stability of the Li (Ni0.8Co0.15Al0.05) O2 cathode in the presence of cell components", J. Electrochem. Soc, Vol. 153, No. 11, 2006, pp. A2030-A2035, doi: https://doi.org/10.1149/1.2336994.
  10. T. Inoue and K. Mukai, "Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: Accelerating rate calorimetry analyses with an all-inclusive microcell", Electrochem. Commun, Vol. 77, 2017, pp. 28-31, doi: https://doi.org/10.1016/j.elecom.2017.02.008.
  11. P. Huang, Q. Wang, K. Li, P. Ping, and J. Sun, "The combustion behavior of large scale lithium titanate battery", Sci. Rep, Vol. 5, 2015, pp. 1-12, doi: https://doi.org/10.1038/srep07788.
  12. R. Guo, L. Lu, M. Ouyang, and X. Feng, "Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries", Sci. Rep, Vol. 6, 2016, pp. 1-9, doi: https://doi.org/10.1038/srep30248.
  13. K. Xu, G. V. Zhuang, J. L. Allen, U. Lee, S. S. Zhang, P.N. Ross, and T.R. Jow, "Syntheses and characterization of lithium alkyl mono- and bicarbonates as components of surface films in Li-ion batteries", J. Phys. Chem. B, Vol. 110, No. 15, 2006, pp. 7708-7719, doi: https://doi.org/10.1021/jp0601522.
  14. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, "Thermal runaway caused fire and explosion of lithium ion battery", J. Power Sources, Vol. 208, 2012, pp. 210-224, doi: https://doi.org/10.1016/j.jpowsour.2012.02.038.
  15. R. Spotnitz and J. Franklin, "Abuse behavior of high-power, lithium-ion cells", J. Power Sources, Vol. 113, No. 1, 2003, pp. 81-100, doi: https://doi.org/10.1016/S0378-7753(02)00488-3.
  16. Q. Wang and J. Sun, "Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate", Mater. Lett, Vol. 61, No. 16, 2007, pp. 3338-3340, doi: https://doi.org/10.1016/j.matlet.2006.11.060.
  17. J. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, and S. Okada, "Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode", J. Power Sources, Vol. 119-121, 2003, pp. 789-793. doi: https://doi.org/10.1016/S0378-7753(03)00254-4.
  18. Q. Wang, J. Sun, X. Yao, and C. Chen, "Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries", J. Electrochem. Soc, Vol. 153, 2006, pp. A329-A333, doi: https://doi.org/10.1149/1.2139955.
  19. J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, D. Aurbach, and M. Schmidt, "The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions", J. Power Sources, Vol. 119-121, 2003, pp. 794-798, doi: https://doi.org/10.1016/S0378-7753(03)00255-6.