• Title/Summary/Keyword: Literacy Content Elements

Search Result 50, Processing Time 0.039 seconds

Analysis of Story-Retelling Structure in Digital Storytelling Applications for Infants (유아용 서사 창작 어플리케이션의 스토리-리텔링 구조 분석)

  • Han, Hye-Won;Ryu, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.146-158
    • /
    • 2013
  • The purpose of this study is to analyze the story-retelling structure of tablet PC-based applications that designed to help infants to create stories. Owing to the popularization and the usability of smart devices, infants have become from content consumers to creators who reconstruct stories in creative ways, based on the stories they heard. In those participatory process, infants experience enjoying stories independently and expanding the meaning of texts. Story-retelling is an adequate methodology that cultivates creativity, expressiveness, and literacy ability to infant. Consequently, this study investigates three types of story-retelling in , , and , and searches structure elements and methods of story-retelling in integrated approach. In conclusion, the story-retelling applications that provide 'creative gap' have educational value, because they allow infants to demonstrate imagination by filling in the gap and to realize the rule of stories.

A Case Study of the Use of Artificial Intelligence in a Problem-Based Learning Program for the Prevention of School Violence (학교폭력 예방을 위한 가정과 AI 기반 문제중심학습 수업 사례연구)

  • Jae Young Shim;Saeeun Choi
    • Human Ecology Research
    • /
    • v.61 no.1
    • /
    • pp.15-28
    • /
    • 2023
  • The aim of this study was to develop, implement, and evaluate the use of Artificial Intelligence in the prevention of violence among middle-school students. The sample for this study consisted of 20 first-year middle-school students who participated in theme selection activities in a free semester program as part of their home economics studies. The data for the study consisted of nine class observation logs, four group activity outputs, 30 class results, an online survey, and in-depth interviews with three students. A program called "R.U.OK" was developed by setting problematic situation for school violence prevention linked to the contents of the Home Economics Education(HEE) curriculum. After the program was implemented, the survey on the students' class satisfaction content elements, with AI-based learning activities and PBL and interest, displayed high points, with an average of 4.0 or higher. Our qualitative analysis produced four significant results. First, students' concerns about school violence had increased and they showed a change in attitude, having more empathy with friends and more interest in their surroundings. Second, digital and AI literacy had improved, and students' interest in digital media learning had increased. Third, there had been an improvement in problem-solving ability in terms of being able to think more critically and independently. Fourth, the results also demonstrated that there had been a positive effect on self-direction and an improved capacity for teamwork. This study was significant in demonstrating the effectiveness of a program for the prevention of school violence based on the use of digital technology in the educational environment.

A Study on the Development of Lesson Plan and Effectiveness Analysis for "Library and Information Life" Subjects using Gagné's Instructional Events Theory (가네의 교수사태 이론을 적용한 "도서관과 정보생활" 교과목 지도안 개발 및 효과분석에 관한 연구)

  • Seong-Hwa Jeong;Byeong-Ki Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.4
    • /
    • pp.5-27
    • /
    • 2023
  • Gagné proposed nine instructional events, gain attention of the students, inform students of the objectives, stimulate recall of prior learning, present the content, provide learning guidance, elicit performance(practice), provide feedback, assess performance, enhance retention and transfer for effective teaching & learning practice. Gagné's theory is widely applied in various subjects because it increases student participation and allows classes to be developed systematically. The purpose of this study is to develop a lesson plans for the 'library and information life' subjects in middle school using Gagné's nine instructional events theory, conduct actual instructions, and verify its effectiveness. The research procedure was conducted as follows. Development of lesson plan that using Gagné's theory to Section III (Information Analysis and Interpretation) of 'Library and Information Life' in middle school. Actual instruction were conducted and student survey, peer teacher assessment, and instructor self-assessment were conducted. Based on the evaluation results, a elements to revise and improve the lesson plan was presented.

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.

Exploring Preservice Teachers' Science PCK and the Role of Argumentation Structure as a Pedagogical Reasoning Tool (교수적 추론 도구로서 논증구조를 활용한 과학과 예비교사들의 가족유사성 PCK 특성 탐색)

  • Youngsun Kwak
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.56-71
    • /
    • 2023
  • The purpose of this study is to explore the role and effectiveness of argumentation structure and the developmental characteristics of science PCK with Earth science preservice teachers who used argumentation structure as a pedagogical reasoning tool. Since teachers demonstrate PCK in a series of pedagogical reasoning processes using argumentation structures, we explored the characteristics of future-oriented family resemblance-PCK shown by preservice science teachers using argumentation structures. At the end of the semester, we conducted in-depth interviews with 15 earth science preservice teachers who had experienced lesson design and teaching practice using the argumentation structure. Qualitative analysis including a semantic network analysis was conducted based on the in-depth interview to analyze the characteristics of preservice teachers' family resemblance-PCK. Results include that preservice teachers organized their classes systematically by applying the argumentation structure, and structured classes by differentiating argumentation elements from facts to conclusions. Regarding the characteristics of each component of the argumentation structure, preservice teachers had difficulty finding warrant, rebuttal, and qualifier. The area of PCK most affected by the argumentation structure is the science teaching practice, and preservice teachers emphasized the selection of a instructional model suitable for lesson content, the use of various teaching methods and inquiry activities to persuade lesson content, and developing of data literacy and digital competency. Discussed in the conclusion are the potential and usability of argument structure as a pedagogical reasoning tool, the possibility of developing science inquiry and reasoning competency of secondary school students who experience science classes using argumentation structure, and the need for developing a teacher education protocol using argumentation structure as a pedagogical reasoning tool.

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

Changes in High School Student Views on the Nature of Science according to Curriculum Change (교육 과정의 변화에 따른 과학의 본성에 대한 고등학생의 관점 변화)

  • Moon, Seong-Sook;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.58-67
    • /
    • 2006
  • Student understanding of the nature of science is necessary not only because it is helpful for solving everyday problems with growing science literacy, but also because it influences students' science learning. Therefore, it was necessary to investigate student views on the nature of science under the 7th national curriculum and compare with those before the 7th national curriculum in order to probe the elements which contribute to changes in student views on the nature of science. A significant number of differences were found between subdimensions of views on the nature of science through the comparison. High school students under the 7th national curriculum had more relativistic, instrumental, and deductive but less process-oriented views than high school students before the 7th national curriculum. The differences between mean values which showed high school student views on the nature of science under and before the 7th national curriculum were significant, except for the subdimension of instrumentanlism/realism. In particular, high school students under the 7th national curriculum possessed a contextual view, whereas those before the 7th national curriculum possessed a decontextual view. Although other factors might be the cause for differences found in this study, we argued by discussion that differences among textbook contents seemed to be the major factor.

A Study on the Plurality of Nature of Science in Science Education ('과학의 본성' 교육 -그 다원성 고찰-)

  • Cho, Eunjin;Kim, Chan-jong;Choe, Seung-urn
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.721-738
    • /
    • 2018
  • Nature of Science(NOS) has been a well-organized focus of science education and one of the key elements in defining and cultivating scientific literacy for more than a century. In recent years, a specific description of NOS, which is often known as 'the consensus view of NOS', has become very influential and has gained ready acceptance as an arrangement for both curriculum building and research into understanding of NOS by students and teachers in many countries around the world. This study has two purposes; one is to review some debates and criticism on the consensus view of NOS which consists of a list of sentences to describe nature of refined and general science, which have been heated up for the last few years by many prominent science education researchers, and the other is to consider alternative perspectives on NOS for the purpose of a new direction of NOS education. As a result of an investigation into such views as 'Teaching about NOS', 'Critical NOS', 'Critical Thinking-NOS', 'Whole Science', 'Features of Science' and 'Reconceptualized Family Resemblance Approach to NOS', some implications which focus on the generality and plurality of content knowledge of NOS based on current philosophy of science and sociology of scientific knowledge are suggested for the improvement of teaching and learning NOS.

Perceptions and Perspectives of Secondary Science Teachers on Core Concepts (핵심 개념에 대한 중등 과학 교사들의 인식 및 관점)

  • Eun-Jeong Yu
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.47-61
    • /
    • 2023
  • Rather than an abstract discourse, the purpose of this study is to outline the core concepts in the 2015 revised curriculum as a concrete teaching and learning method in the school context. We interviewed eight secondary science teachers and reported their perceptions and perspectives on core concepts using a backward design model based on the cyclical process of the platform, deliberation, and design for developing teaching and learning materials to understand core concepts. The participants perceived these core concepts differently, such as big ideas corresponding to the ultimate principle, minimum science concepts required for daily life, and primary and significant key concepts. In addition, this affects the association of teaching and learning. When core concepts are understood as transferable and expandable big ideas, there is a tendency to focus on the relationship between concepts and design project learning in a specific direction. However, if core concepts are identified as minimum science concepts at the level of science literacy, that can be recalled within the context of life, there is a tendency to emphasize on activities that make a meaningful difference to the lives of students with focus on case studies that are relevant to everyday life. Once core concepts are identified as key scientific content elements, such as basic or significant concepts, teachers recognize that it is essential to emphasize concept changes by correcting misconceptions, acquiring accurate scientific knowledge, and developing problem-solving items through paper-and-pencil evaluation. As the 2015 revised curriculum is finalized and the 2022 revised curriculum is scheduled for release, effective policy support is required to ensure that the curriculum is revised, which emphasizes the purpose of big ideas by naming core concepts as core ideas, to be stably implemented in schools.

History and Characteristics of Risk Perception and Response Related to Science: Focused on Blood Pressure (과학에 관련된 위험 인식과 대응의 역사와 특징 -혈압을 중심으로-)

  • Wonbin Jang;Minchul Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.549-562
    • /
    • 2023
  • The current society is in the VUCA era, where various risks produced by humans are spread along with the development of science and technology. There is a need to increase the level of risk literacy of citizens to strengthen their daily preparedness to respond to these risks. For this on, it is necessary to reconsider the role of science education so that risks can be perceived and responded to scientifically and objectively. Accordingly, in order to investigate the role of science education in a risk society, this study reviewed the history of risk perception and response related to science and analyzed its characteristics. In this process, perception and response to risks arising from blood pressure were analyzed in three contexts (historical context, curriculum context, textbook context). For historical context, journals registered in SCIE were selected as research subjects among journals where research related to the history of knowledge of the heart and cardiovascular system was conducted. Papers with the keywords 'hypertension' and 'history' were selected from the journals, and changes in perception and responses related to blood pressure were compared and analyzed by period. The curriculum context is analyzed from the 1st national curriculum to the 2022 revised curriculum, and content elements and achievement standard related to blood pressure were compared and analyzed. It was confirmed that risks arising from blood pressure were not included from the 1st to the 6th national curriculum, and that risks arising from blood pressure were included from the 7th national curriculum (excluding the 2009 revised curriculum). For the textbook context, the 7th national curriculum BiologyⅠ, the 2015 revised curriculum Life ScienceⅠ, and Health were selected, and through text mining, keywords that representing curriculums and textbooks were selected, and the presentation of risk perception and response was analyzed based on the keywords. And by analyzing the figures and tables presented in the textbook, the characteristics of risk perception and risk response were derived. This study is meaningful in that it was able to confirm the role of risk perception and response in science education.