• 제목/요약/키워드: Liquid pool

검색결과 161건 처리시간 0.036초

분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (Effects of Spray Characteristics of Water Mist on The Extinction of a Liquid Pool Fire)

  • 김호영;오상엽;정진택
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1591-1599
    • /
    • 2004
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is a small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is l15∼180${\mu}{\textrm}{m}$ with nozzle A and 130∼190${\mu}{\textrm}{m}$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of $O_2$ concentration.

미분무수 분무특성이 액체연료 Pool 화염의 소화에 미치는 영향 (The Effects of Spray Characteristics of Water Mist on the Fire Suppression of Liquid Pool Fire)

  • 오상엽;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.215-221
    • /
    • 2003
  • A series of experiments were conducted to study the effectiveness of the extinction of a liquid pool fire with two different water atomizing nozzles. Fire source is small-scale circular stainless steel pan of 120mm in diameter with the fuels of hexane and ethanol. K-type thermocouples were used to measure the flame and fuel temperature along the pool centerline and under fuel surface. A digital camera was used to visualize the process of the fire suppression. The experimental results show that water mist droplet size is $115{\sim}180{\mu}m$ with nozzle A and $130{\sim}190{\mu}m$ with nozzle B. The extinguishing time of pool fire was reduced with the increase of pressure. When water droplets are small, they do not reach the flame base since they may be deflected or evaporated by the fire plume. However, influence of flow rate is more important than droplet size on fire extinction. Among the fire extinction mechanisms, drop of flame temperature is superior to suffocation of O2 concentration.

  • PDF

액체질소의 연속 누출 실험 (Experiments of Continuous Release of Liquid Nitrogen)

  • 한용식;김명배;르-두이 응옌;김민창;김창현;김태훈;도규형;최병일
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.526-534
    • /
    • 2023
  • To evaluate the risk of leakage when using liquid hydrogen, a leakage test was conducted using liquid nitrogen in an outdoor environment rather than a laboratory environment. To assume a real-scale continuous leak, liquid nitrogen was allowed to leak for 5 minutes through a pipe with a diameter of 25.4 mm at a design spill rate of 60 L/min. The measurement system consisted of devices for climate conditions, LN2 spread and vapor clouds. The main experimental results are the liquid pool radius and the concentration of vapor cloud, and the radius of the liquid pool was compared with the numerical analysis results.

Near-resonant attitude motion analysis of a spinning satellite via multiple scales method

  • Kang, Ja-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.213-217
    • /
    • 1994
  • The attitude stability of a satellite in spin-stabilized injection mode which contains a liquid pool is investigated. The satellite model for investigation is a two-body system consisting of a the main body, which is symmetric and rigid, representing the spacecraft, and a spherical pendulum, representing the liquid pool. Assuming that both spacecraft and pendulum are in states of steady spin about the symmetry axis of the spacecraft, the coupled nonlinear equations of motion for the system are simplified. In this paper, by using the multiple scales method, the possible resonance conditions in terms of the system parameters are determined and the corresponding near-resonant solutions are derived.

  • PDF

Effects of Pool Subcooling on Boiling Heat Transfer in an Annulus

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.460-474
    • /
    • 2004
  • Effects of liquid subcooling on pool boiling heat transfer in an annulus with an open bottom have been investigated experimentally. A tube of 19.1mm diameter and the water at atmospheric pressure have been used for the fest. Up to $50^{\circ}C$ of liquid subcooling has been tested and experimental data of the annulus have been compared with the data of a single unrestricted tube. Temperatures on the heated tube surface fluctuate only slightly regardless of the heat flux in the annulus, whereas high variation is observed on the surface of the single tube. An increase in the degree of subcooling decreases heat transfer coefficients greatly both for the single tube and the annulus. Heat transfer coefficients increase suddenly at ${\Delta}T_{sub}\;{\le}\;10^{\circ}C$ and much greater change in heat transfer coefficients is observed at the annulus. To obtain effects of subcooling on heat transfer quantitatively, two new empirical equations have been suggested, and the correlations predict the empirical data within ${\pm}30\%$ error bound excluding some data at lower heat transfer coefficients.

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool

  • Park, Sung Hoon;Park, Changhwan;Lee, JinYong;Lee, Byungchul
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.692-699
    • /
    • 2017
  • The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the $E_o-R_e$ plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

EXPERIMENTAL STUDY ON CHF CHARACTERISTICS OF WATER-TI02 NANO-FLUIDS

  • Kim, Hyung-Dae;Kim, Jeong-Bae;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.61-68
    • /
    • 2006
  • CHF characteristics of nano- fluids were investigated with different volumetric concentrations of $TiO_2$ nanoparticles. Pool boiling experiments indicated that the application of nano-fluids, instead of pure water, as a cooling liquid significantly increased the CHF. SEM (scanning electron microscope) observations subsequent to the pool boiling experiments revealed that nanoparticles were coated on the heating surface during pool boiling of nano-fluids. In order to investigate the roles of nanoparticles in CHF enhancement ofb nano-fluids, pool boiling experiments were performed using (a) a nanoparticle-coated heater, prepared by pool boiling of nano-fluids, immersed in pure water and (b) a nanoparticle-coated heater immersed in nano-fluids. The results demonstrated two different roles of nanoparticles in CHF enhancement using nano-fluids: the effect of nanoparticles coated on the heater surface and the effect of nanoparticles suspended in nano- fluids.

LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition (Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms)

  • 하정협;강선홍
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도 (A Review on Size, Shape and Velocity of a Bubble Rising in Liquid)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2017
  • 본 총설에서는 액체층을 통과하는 기포의 크기, 형상, 상승속도를 결정하기 위한 이론들을 살펴보았다. 액체의 물리적 특성과 기포의 유량으로부터 기포의 크기, 형상, 상승속도를 체계적으로 계산하는 여러 가지 이론식 및 모수식들을 살펴보고, 각각의 장단점을 정리하였다. 이 분야에서 발표된 초기 저작들에서는 주로 반복계산을 통해 기포의 형상과 상승속도를 결정하는 기법들이 사용되었으나, 최근에 발표된 논문들에서는 간단한 모수식을 통해 기포의 형상과 상승속도를 반복계산 없이 쉽게 구하는 기법들이 제시되고 있다. 이러한 기법들은 매우 다양한 물리적 특성을 가지는 실험결과들과의 비교에서도 우수성을 보여주고 있어, 관련 분야의 연구에 매우 유용한 도구로 사용할 수 있을 것으로 보인다.