Abstract
CHF characteristics of nano- fluids were investigated with different volumetric concentrations of $TiO_2$ nanoparticles. Pool boiling experiments indicated that the application of nano-fluids, instead of pure water, as a cooling liquid significantly increased the CHF. SEM (scanning electron microscope) observations subsequent to the pool boiling experiments revealed that nanoparticles were coated on the heating surface during pool boiling of nano-fluids. In order to investigate the roles of nanoparticles in CHF enhancement ofb nano-fluids, pool boiling experiments were performed using (a) a nanoparticle-coated heater, prepared by pool boiling of nano-fluids, immersed in pure water and (b) a nanoparticle-coated heater immersed in nano-fluids. The results demonstrated two different roles of nanoparticles in CHF enhancement using nano-fluids: the effect of nanoparticles coated on the heater surface and the effect of nanoparticles suspended in nano- fluids.