• Title/Summary/Keyword: Liquid petroleum

Search Result 181, Processing Time 0.02 seconds

Characteristic Analysis of GTL Fuel as an Automobile Diesel (자동차용 경유로서 GTL의 연료특성분석)

  • Lim, Young-Kwan;Shin, Seong-Cheol;Kim, Jong-Ryeol;Yim, Eui-Soon;Song, Hung-Og;Kim, Dongkil
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2008
  • GTL (gas-to-liquid) fuel produced by the Fischer-Tropsch reaction of carbon monoxide (CO) and hydrogen ($H_2$) is expected to be one of the environmental friendly biomass based alternatives and blended to petrodiesel. In this study, the characteristic of the fuel was analyzed by its concentration differences after blending petrodiesel in domestic market with different amounts of GTL fuel which produced from Shell. Gas chromatography shows that GTL fuel consists of longer paraffin chain than common diesel. GTL fuel showed a high flash point, distillation, kinematic viscosity, and derived cetane number. In addition, GTL fuel showed lower lubricity due to low sulfur content.

On-Site Treatment of Soil Contaminated by Heavy Metals and Petroleum using Relocatable Soil Washing Equipment

  • Kim, Taeeung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • We studied the on-site treatment of soil contaminated by heavy metals and petroleum was tested using relocatable soil washing equipment for greater remediation efficiency. Different combinations of pH and solid/liquid ratio were tested to determine the optimum balance, settling on values of 5 and 1:2, respectively. Next, soils containing Pb, Hg, and petroleum were further tested to assess the optimum number of washing cycles. The remediation efficiency of Pb and Hg in soil contaminated solely by heavy metals was 90.1% and 86.4% after three and two washings, respectively. The remediation efficiency of petroleum in soil contaminated solely by petroleum was 98.8% after one washing. When soil contaminated by both heavy metals and petroleum was cleaned, up to 91.0% of Pb, 86.9% of Hg, and 96.1% of petroleum was removed after two, one, and one washings, respectively. We conducted all remediation efficiencies and concentration reductions satisfied the standard threshold for soil contamination in South Korea.

Mesophase formation behavior in petroleum residues

  • Kumar, Subhash;Srivastava, Manoj
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.171-182
    • /
    • 2015
  • Mesophase pitch is an important starting material for making a wide spectrum of industrial and advanced carbon products. It is produced by pyrolysis of petroleum residues. In this work, mesophase formation behavior in petroleum residues was studied to prepare environmentally-benign mesophase pitches, and the composition of petroleum residues and its influence on the mesophase formation was investigated. Two petroleum residues, i.e., clarified oil s (CLO-1, CLO-2) obtained from fluid catalytic cracking units of different Indian petroleum refineries, were taken as feed stocks. A third petroleum residue, aromatic extract (AE), was produced by extraction of one of the CLO-1 by using N-methyl pyrrolidone solvent. These petroleum residues were thermally treated at 380℃ to examine their mesophase formation behavior. Mesophase pitches produced as a result of thermal treatment were characterized physico-chemically, as well as by instrumental techniques such as Fourier-transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and thermogravimetry/derivative thermogravimetry. Thermal treatment of these petroleum residues led to formation of a liquid-crystalline phase (mesophase). The mesophase formation behavior in the petroleum residues was analyzed by optical microscopy. Mesophase pitch prepared from CLO-2 exhibited the highest mesophase content (53 vol%) as compared to other mesophase pitches prepared from CLO-1 and AE.

BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE

  • PARK K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.215-219
    • /
    • 2005
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. A liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray injecting from single hole injector. Two different test conditions are given, which are a fully developed spray case with various injection pressures and a developing spray case with ambient pressure variation. The LPG spray photographs are compared with the sprays of gasoline and diesel fuel at the same conditions, and the spray angles and penetration lengths are also compared, and then the spray behavior is analyzed. The LPG spray photos show that the dispersion characteristic depends very sensitively on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure, but the angle is quickly reduced at the condition over the pressure. However, the down stream of the LPG spray shows much wider dispersion and less penetration than those of gasoline and diesel sprays regardless ambient pressure condition.

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis (저온 열분해시 HDPE 및 LDPE의 액화 특성)

  • Lee, Bong-Hee;Park, Su-Yul;Kim, Ji-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

Determination of Unimark 1494DB in Petroleum using HPLC (HPLC를 이용한 석유제품 중의 식별제 Unimark 1494DB 분석)

  • Lim, Young-Kwan;Kim, DongKil;Yim, Eui Soon;Shin, Seong-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2009
  • In this study, the qualitative and quantitative analytical method for petroleum marker(Unimark 1494DB) in common diesel involved kerosene and byproduct fuel was developed using SPE pretreatment and high performance liquid chromatography. In SPE pretreatment process, the highest concentrated marker was obtained 15 minutes after addition of petroleum sample. The petroleum marker was detected with $1626.92mV{\cdot}sec$ intensity at 9.8 minutes retention time in 1 mg/L content in petrodiesel after pretreatment. Also petroleum marker was selectively identified in an acidic petroleum product which was previously difficult to be analyzed by UV-Vis Spectroscopy.

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds

  • Lu, Renqing;Liu, Dong;Wang, Shutao;Lu, Yukun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1814-1822
    • /
    • 2013
  • By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.

Fabrication of Mn-Zn Ferrite by Hot Petroleum Drying Method (석유증발 건조방법에 의한 Mn-Zn Ferrite의 제조에 관한 연구)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 1979
  • This study attempted to characterize the powder and sintered specimen of Mn-Zn ferrite that was prepared by Hot Petroleum Drying Method. The results of the experiment were as follows: 1. The mixed sulfate powder prepared by Hot Petroleum Drying Method was homogeneous and very reactive. The ferrite formation of this powder occurred at lower temperature than the one prepared by Sulfate Dry Mixing Method. 2. The calcined oxide powder prepared by Hot Petroleum Drying Method was found to be agglomerated, and therefore it was very difficult to compact this powder. 3. The sintered density was 4.95g/㎤, 97% of the theoretical density, when the specimen was prepared by Hot Petroleum Drying method, calcined at 90$0^{\circ}C$ in air for 3h, sintered at 1,30$0^{\circ}C$ in air for 3h, and then cooled in nitrogen. 4. The discontinuous grain growth occurred at lower temperature in the specimen prepared by Hot Petroleum Dyring Method than in the one prepared by Sulfate Dry Mixing Method. The discontinuous grain growth was considered to be due to the presence of liquid formed by addition of CaO and $SiO_2$.

  • PDF

Determination of Visible Marker in Petroleum Using HPLC (HPLC를 이용한 석유제품 내의 가시적 식별제 분석)

  • Lim, Young-Kwan;Kim, Dong-Kil;Yim, Eui-Soon;Shin, Seong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.306-310
    • /
    • 2010
  • Petroleum visible markers (dye) have been used to distinguish different fuel classes and to prevent illegal mixing. It is difficult to recognize the real color of visible marker when the small amount of petroleum product was mixed in another fuel oil. In this study, we determined the two wavelengths (370 nm, 645 nm) which detect all Korean petroleum visible marker using UV/Vis spectrophotometer. Then we analyzed the visible marker using high performance liquid chromatography (HPLC) in two wavelength detectors. Also, we optimized the analytic method for petroleum visible marker in illegal mixed fuel oil.

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.