Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.6.1814

Theoretical Study on Interactions between N-Butylpyridinium Nitrate and Thiophenic Compounds  

Lu, Renqing (College of Science, China University of Petroleum (East China))
Liu, Dong (College of Chemical Engineering, China University of Petroleum (East China))
Wang, Shutao (College of Science, China University of Petroleum (East China))
Lu, Yukun (College of Science, China University of Petroleum (East China))
Publication Information
Abstract
By using density functional theory calculations, we have performed a systemic study on the electronic structures and topological properties of interactions between N-butylpyridinium nitrate ($[BPY]^+[NO_3]^-$) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT), naphthalene (NAP). The most stable structure of $[BPY]^+[NO_3]^-$ ion pair indicates that hydrogen bonding interactions between oxygen atoms on $[NO_3]^-$ anion and C2-H2 on pyridinium ring play a dominating role in the formation of ion pair. The occurrence of hydrogen bonding, ${\pi}{\cdots}$H-C, and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and TS, BT, DBT, NAP has been corroborated at the molecular level. But hydrogen bonding and ${\pi}{\cdots}{\pi}$ interactions between $[BPY]^+[NO_3]^-$ and NAP are weak in terms of structural properties and NBO, AIM analyses. DBT is prior to adsorption on N-butylpyridinium nitrate ionic liquid.
Keywords
Ionic liquid; Density functional theory; Thiophene; Benzothiophene; Dibenzothiophene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anantharaj, R.; Banerjee, T. AIChE J. 2011, 57, 749.   DOI   ScienceOn
2 Su, B.; Zhang, S.; Zhang, C. J. Phys. Chem. B 2004, 108, 19510.   DOI   ScienceOn
3 Zhou, J.; Mao, J.; Zhang, S. Fuel Process. Technol. 2008, 89, 1456.   DOI   ScienceOn
4 Martinez-Magadan, J.; Oviedo-Roa, R.; Garcia, P.; Martinez-Palou, R. Fuel Process. Technol. 2012, 97, 24.   DOI   ScienceOn
5 Liu, X.; Zhou, G.; Zhang, X.; Zhang, S. AIChE J. 2010, 56, 2983.   DOI   ScienceOn
6 Gui, J.; Liu, D.; Sun, Z.; Liu, D.; Min, D.; Song, B.; Peng, X. J. Mol. Catal. A: Chem. 2010, 331, 64.   DOI   ScienceOn
7 Nie, Y.; Yuan, X. J. Theor. Comput. Chem. 2011, 10, 31.   DOI   ScienceOn
8 Wang, J.; Zhao, D.; Zhou, E.; Dong, Z. J. Fuel Chem. Technol. 2007, 35, 293.   DOI   ScienceOn
9 Gao, H.; Luo, M.; Xing, J.; Wu, Y.; Li, Y.; Li, W.; Liu, Q.; Liu, H. Ind. Eng. Chem. Res. 2008, 47, 8384.   DOI   ScienceOn
10 Zhao, D.; Wang, Y.; Duan, E. Molecules 2009, 14, 4351.   DOI   ScienceOn
11 Gao, H.; Li, Y.; Wu, Y.; Luo, M.; Li, Q.; Xing, J.; Liu, H. Energy Fuels 2009, 23, 2690.   DOI
12 Zhao, D.; Wang, Y.; Duan, E.; Zhang, J. Chem. J. Chin. Univ. 2010, 31, 488.
13 Delley, B. J. Chem. Phys. 1990, 92, 508.   DOI
14 Delley, B. J. Chem. Phys. 2000, 113, 7756.   DOI   ScienceOn
15 Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.   DOI   ScienceOn
16 Castellano, O.; Gimon, R.; Soscun, H. Energy Fuels 2011, 25, 2526.   DOI   ScienceOn
17 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.   DOI
18 Singh, R. N.; Kumar, A.; Tiwari, R. K.; Rawat, P.; Gupta, V. P. J. Mol. Struct. 2013, 1035, 427.   DOI   ScienceOn
19 Lobayan, R. M.; Jubert, A. H.; Vitale, M. G.; Pomilio, A. B. J. Mol. Model 2009, 15, 537.   DOI   ScienceOn
20 Biegler-Konig, F.; Schonbohm, J. J. Comput. Chem. 2002, 23, 1489.   DOI   ScienceOn
21 Biegler-Konig, F.; Schonbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545.   DOI
22 Inada, Y.; Orita, H. J. Comput. Chem. 2008, 29, 225.   DOI   ScienceOn
23 Bondi, A. J. Phys. Chem. 1964, 68, 441.   DOI
24 Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J. Am. Chem. Soc. 2002, 124, 10887.   DOI   ScienceOn
25 Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.   DOI   ScienceOn
26 Rashkin, M. J.; Waters, M. L. J. Am. Chem. Soc. 2002, 124, 1860.   DOI   ScienceOn
27 Bader, R. W. F. Chem. Rev. 1991, 91, 893.   DOI
28 Koch, U.; Popelier, P. L. A. J. Phys. Chem. 1995, 99, 9747.   DOI
29 Sainz-Diaz, C. I.; Francisco-Marquez, M.; Vivier-Bunge, A. Theor. Chem. Acc. 2010, 125, 83.   DOI
30 Popelier, P. L. A. J. Phys. Chem. A 1998, 102, 1873.   DOI   ScienceOn
31 Zhang, S.; Zhang, Z. C. Green Chem. 2002, 4, 376.   DOI   ScienceOn
32 Zhang, S.; Zhang, Q.; Zhang, Z. C. Ind. Eng. Chem. Res. 2004, 43, 614.   DOI   ScienceOn
33 Espinosa, E.; Souhassou, M.; Lachekar, H.; Lecomte, C. Acta Cryst. 1999, B55, 563.
34 Netzel, J.; van Smaalen, S. Act Cryst. 2009, B65, 624.
35 Stanislaus, A.; Marafi, A.; Rana, M. S. Catal. Today 2010, 153, 1.   DOI   ScienceOn
36 Kulkarni, P. S.; Afonso, C. A. M. Green Chem. 2010, 12, 1139.   DOI   ScienceOn
37 Bosmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasseerscheid, P. Chem. Commun. 2001, 2494.
38 Lo, W.; Yang, H.; Wei, G. Green Chem. 2003, 5, 639.   DOI   ScienceOn
39 Anantharaj, R.; Banerjee, T. Int. J. Chem. Eng. 2011, 2011, 1.
40 Potdar, S.; Anantharaj, R.; Banerjee, T. J. Chem. Eng. Data 2012, 57, 1026.   DOI   ScienceOn
41 Kumar, A. A. P.; Banerjee, T. Fluid Phase Equilib. 2009, 278, 1.   DOI   ScienceOn
42 Anantharaj, R.; Banerjee, T. Fluid Phase Equilib. 2011, 312, 20.   DOI   ScienceOn
43 Santiago, R. S.; Santos, G. R.; Aznar, M. Fluid Phase Equilib. 2009, 278, 54.   DOI   ScienceOn
44 Hanke, C. G.; Johansson, A.; Harper, J. B.; Lynden-Bell, R. M. Chem. Phys. Lett. 2003, 374, 85.   DOI   ScienceOn
45 Kedra-Krolik, K.; Fabrice, M.; Jaubert, J. Ind. Eng. Chem. Res. 2011, 50, 2296.   DOI   ScienceOn