• 제목/요약/키워드: Liquid Salt

검색결과 350건 처리시간 0.021초

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Salting-out Effects on the Partition of Proteins in Aqueous Two-phase Systems

  • KIM, CHAN-WHA;CHO KYUN RHA
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권5호
    • /
    • pp.352-357
    • /
    • 1996
  • The partition of proteins in the salt-rich phase of polyethylene glycol (pEG)/salt aqueous two-phase systems is limited by the salting-out effects of salt. The logarithm of the concentration of proteins partitioned in the salt-rich phase decreases linearly with increases in the concentration of salt in the salt-rich phase (salting-out). Therefore, the partition of a given protein in the salt-rich phase of aqueous two-phase systems can be estimated from the salting-out constant. The slope of the solubility line (salting-out con-stant) for a given protein is determined by the type of salt in the two-phase systems.

  • PDF

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang;Handikajati Kusuma Marjadi
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.113-120
    • /
    • 2023
  • Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

식물세포배양으로부터 파클리탁셀 회수를 위한 무기염이 첨가된 액-액 추출 (Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures by Adding Inorganic Salts)

  • 하건수;김진현
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.135-139
    • /
    • 2016
  • 본 연구에서는 무기염을 첨가한 액-액 추출에 의해 식물세포인 바이오매스로부터 파클리탁셀 회수 방법을 획기적으로 개선하고자 하였다. 다양한 무기염(NaCl, KCl, $K_2HPO_4$, $NaH_2PO_4$, $NaH_2PO_4{\cdot}2H_2O$)을 이용하여 추출효율을 조사한 결과, NaCl에서 가장 낮은 분배계수(0.053)로 가장 높은 파클리탁셀 수율(~96%)을 얻을 수 있었다. NaCl을 이용한 액-액 추출에서 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비는 각각 1%(w/v)와 26%(v/v)이었다. 또한 최적의 NaCl/용매 비와 메틸렌 클로라이드/메탄올 비에서 파클리탁셀 함량에 따른 영향을 조사한 결과, 순수 파클리탁셀 함량 0.066%(w/v)에서 가장 낮은 분배계수(0.053)로 가장 높은 수율(~96%)을 얻을 수 있었다. 기존 액-액 추출의 경우 총 3회의 추출로 파클리탁셀을 95% 정도 회수 가능한 반면 무기염을 이용한 방법의 경우 단 1회 추출로 대부분의 파클리탁셀을 회수(~96%) 가능하였다.

Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine

  • Dharmalingam, Sivanesan;Park, Ki Tae;Lee, Ju-Yeol;Park, Il-Gun;Jeong, Soon Kwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.335-341
    • /
    • 2018
  • We report the catalytic effects of metal oxides on the $CO_2$ absorption rate in an aqueous potassium salt of ${\text\tiny{L}}-lysine-HCl$ using the vapor liquid equilibrium method. The best $CO_2$ absorption rate obtained through testing metal oxides in a highly concentrated potassium salt of amino acids (2.0 M) was identified using CuO. The recyclability of the metal oxides was tested over three cycles. The catalyst CuO was found to enhance the absorption rate of $CO_2$ by 61%. A possible mechanism was proposed based on NMR spectroscopy studies. Further, the effect of change in liquid absorbent viscosity on $CO_2$ absorption is discussed.

Residual salt separation technique using centrifugal force for pyroprocessing

  • Kim, Sung-Wook;Lee, Jong Kwang;Ryu, Dongseok;Jeon, Min Ku;Hong, Sun-Seok;Heo, Dong Hyun;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1184-1189
    • /
    • 2018
  • Pyroprocessing uses various molten salts during electrochemical unit processes. Reaction products after the electrochemical processes must contain a significant amount of residual salts to be separated. Vacuum distillation is a common method to separate the residual salts; however, its high operation temperature may cause side reactions. In this study, a simple rotation technique using centrifugal force was suggested to separate the residual salts from the reaction products at relatively low temperature compared to the distillation technique. When a reaction product container with porous wall rotates inside a vessel heated above the melting point of the residual salt, the residual salt in the liquid phase is separated through centrifugal force. It was shown that the $LiNO_3-Al_2O_3$ mixture can be separated by this technique to leave solid $Al_2O_3$ inside the container, with a separation efficiency of 99.4%.

Continuous dialysis of selected salts of sulphuric acid

  • Bendova, Helena;Snejdrla, Pavel;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.171-179
    • /
    • 2010
  • The transport of selected salts of sulphuric acid (cobalt, copper, iron(II), manganese, nickel and zinc sulphate) through an anion-exchange membrane Neosepta-AFN was investigated in a counter-current continuous dialyzer at various salt concentrations and volumetric liquid flow rates. The basic transport characteristics - the rejection coefficient of salt and the permeability of the membrane - were calculated from measurements at steady state. The salt concentration in model mixtures was changed in the limits from 0.1 to 1.0 kmol $m^{-3}$ and the volumetric liquid flow rate of the inlet streams was in the limits from $8{\times}10^{-9}$ to $24{\times}10^{-9}m^3\;s^{-1}$. Under the experimental conditions given, the rejection coefficient of salts tested was in the range from 65% to 94%. The lowest values were obtained for iron(II) sulphate, while the highest for copper sulphate. The maximum rejection of salt was reached at the highest volumetric liquid flow rate and the highest salt concentration in the feed. The permeability ($P_A$) of the Neosepta-AFN membrane for the individual salts was in the range from $0.49{\times}10^{-7}m\;s^{-1}$ to $1.8{\times}10^{-7}m\;s^{-1}$ and it can be described by the following series: $P_{FeSO_4}$ < $P_{NiSO_4}$ < $P_{ZnSO_4}$ < $P_{CoSO_4}$ < $P_{MnSO_4}$ < $P_{CuSO_4}$. The permeability of the membrane was strongly affected by the salt concentration in the feed - it decreased with an increasing salt concentration.

Salt Distiller With Mesh-covered Crucible for Electrorefiner Uranium Deposits

  • Kwon, S.W.;Lee, Y.S.;Kang, H.B.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.83-83
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. Distillation process was employed for the cathode processing. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. In this study, a mesh-covered crucible was investigated for the sat distillation of electrorefiner uranium deposits. A liquid salt separation step and a vacuum distillation step were combined for salt separation. The adhered salt in uranium deposits was efficiently removed in the mesh-covered crucible. The salt distiller was operated simply since repeated cooling - heating step was not necessary for the change of the crucible. The operation time could be reduced by the use of the mesh-covered crucible and the combined operation of the two steps. A method to preserve a vacuum level was proposed by double O-rings during the operation of the distiller with the mesh-covered crucible. After the salt distillation, the salt content was measured and was below 0.1wt% after the salt distillation. The residual salt after the salt distillation can be removed further during melting of uranium metal.

  • PDF

Effect of ultrasonication, salt solution and liquid smoke treatment on germination of Setaria italica seeds

  • Kim, Young Ae;Kim, Min Geun;Oh, Ju-Sung;Kim, Du Hyun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.215-215
    • /
    • 2017
  • The preference for domestic cereal crop of Setaria Italica has been increased with the recent interest in healthy foods. However, the productivity of Korean domestic produce, which has been decreasing due to the lack of cultivation technology and the low rate of mechanization during cultivation. Increase of germination ability will have a positive effect on the cultivation by reducing the labor of the manpower consuming and weeding work. Therefore, red light, ultrasonication, liquid priming and liquid smoke treatment that are effective for the germination of the seeds evaluated. The seeds of 1.4mm or more were used for the experiment. The priming solution used in the experiment was 1% $KH_2PO_4$ (74mM). During the priming, the light treated seeds at 2000 lux for 15, 30, 60 and 120 minutes. Ultrasonicationd treatment was performed for 5, 10, and 20 minutes at exposures of 60%, 80%, and 100% of ultrasound up to 21.6 kHz during priming. Light or ultrasound treated seeds transferred to priming treatment at $15^{\circ}C$ for 24 hours. The treatment of the liquid smoke was divided into the treatment of the liquid smoke alone and the treatment of the liquid smoke with the priming. The liquid smoke alone was diluted with distilled water without priming solution and the treatment of the liquid smoke was diluted with the salt priming solution. Both treatments were performed at 0.0%, 0.5%, 1.0%, 5.0%, and 10.0% of the liquid smoke (pH7) concentration at $15^{\circ}C$ for 6 hours. After each treatment, the seeds were dried to moisture content ranged 5-8% at $25^{\circ}C$ for 24 hours. All treatments showed better results than the non-treated control. Light treatment for 120 minutes improved for germination percentage (GP), Germination uniformity (GU) and heath seed percentage (HS). Ultrasonication treatment was most effective when treated with ultrasound at 21.6 kHz for 5 minutes in all germination characteristics. Ten % of the liquid smoke increase in 92% GP, 1.8 days MGT, $54%{\cdot}day^{-1}GR$, 0.76 GU and 88% HS comparing to non-treated control (72% GP, 2.3 days MGT, $45%{\cdot}day^{-1}GR$, 1.48 GU, and 63 % HS). This study showed that it is possible to obtain high germination by adding liquid smoke treatment to the seeds supplied to the farmers. The efficacy of light, ultrasonication, inorganic salt priming, and liquid smoke treatment on the seeds found in the experiment will be a positive alternative to labor force problems in the cultivation by improving germination.

  • PDF