Browse > Article
http://dx.doi.org/10.1016/j.net.2018.06.009

Residual salt separation technique using centrifugal force for pyroprocessing  

Kim, Sung-Wook (Korea Atomic Energy Research Institute,)
Lee, Jong Kwang (Korea Atomic Energy Research Institute,)
Ryu, Dongseok (Korea Atomic Energy Research Institute,)
Jeon, Min Ku (Korea Atomic Energy Research Institute,)
Hong, Sun-Seok (Korea Atomic Energy Research Institute,)
Heo, Dong Hyun (Korea Atomic Energy Research Institute,)
Choi, Eun-Young (Korea Atomic Energy Research Institute,)
Publication Information
Nuclear Engineering and Technology / v.50, no.7, 2018 , pp. 1184-1189 More about this Journal
Abstract
Pyroprocessing uses various molten salts during electrochemical unit processes. Reaction products after the electrochemical processes must contain a significant amount of residual salts to be separated. Vacuum distillation is a common method to separate the residual salts; however, its high operation temperature may cause side reactions. In this study, a simple rotation technique using centrifugal force was suggested to separate the residual salts from the reaction products at relatively low temperature compared to the distillation technique. When a reaction product container with porous wall rotates inside a vessel heated above the melting point of the residual salt, the residual salt in the liquid phase is separated through centrifugal force. It was shown that the $LiNO_3-Al_2O_3$ mixture can be separated by this technique to leave solid $Al_2O_3$ inside the container, with a separation efficiency of 99.4%.
Keywords
Pyroprocessing; Molten salt; Salt separation; Liquid-solid separation; Centrifugal force;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R.C. Ewing, Long-term storage of spent nuclear fuels, Nat. Mater. 14 (2015) 252-257.   DOI
2 C. Braun, R. Forrest, Considerations regarding ROK spent nuclear fuel management options, Nucl. Eng. Technol. 45 (2013) 427-438.   DOI
3 C.E. Till, Y.I. Chang, Plentiful Energy: the Story of the Integral Fast Reactor, Create Space Independent Publishing Platform, 2011.
4 H.-S. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E.-H. Kim, Pyroprocessing technology development at KAERI, Nucl. Eng. Technol. 43 (2011) 317-328.   DOI
5 T. Inoue, L. Koch, Development of pyroprocessing and its future direction, Nucl. Eng. Technol. 40 (2008) 183-190.   DOI
6 I.S. Kim, S.C. Oh, H.S. Lim, J.M. Hur, H.S. Lee, Distillation of LiCl from the $LiCl-Li_2O$ molten salt of the electrolytic reduction process, J. Radioanal. Nucl. Chem. 295 (2013) 1413-1417.   DOI
7 S.-W. Kim, J.-M. Hur, D.H. Heo, S.-S. Hong, E.-Y. Choi, Residual salt separation of reaction products in pyroprocessing, in: Korean Radioactive Waste Society 2017 Fall Meeting, Oct. 18-20, 2017. Changwon, Republic of Korea.
8 J.-H. Lee, Y.-H. Kang, S.-C. Hwang, J.-B. Shim, B.-G. Ahn, E.-H. Kim, S.-W. Park, Electrodeposition characteristics of uranium in molten LiCl-KCl eutectic and its salt distillation behavior, J. Nucl. Sci. Technol. 43 (2006) 263-269.   DOI
9 E.-Y. Choi, M.K. Jeon, J.-M. Hur, Reoxidation of uranium in electrochemically reduced simulated oxide fuel during residual salt distillation, J. Radioanal. Nucl. Chem. 314 (2017) 207-213.   DOI
10 C.P. Wang, Z.S. Li, W. Fang, X.J. Liu, Thermodynamic database and the phase diagrams of the (U, Th, Pu)-X binary system, J. Phase Equilibria Diffusion 30 (2009) 535-552.   DOI
11 G.J. Janz, S.W. Lurie, G.L. Gardner, Viscosity of molten $LiNO_3$, J. Chem. Eng. Data 23 (1978) 14-16.   DOI
12 M. Wakao, K. Minami, A. Nagashima, Viscosity measurements of molten LiCl in the temperature rage 886-1275K, Int. J. Thermophys. 12 (1991) 223-230.   DOI
13 C.M. Kramer, Z.A. Munir, J.V. Volponi, Simultaneous dynamic thermogrevimetry and mass spectrometry of the evaporation of alkali metal nitrates and nitrides, J. Therm. Anal. 27 (1983) 401-408.   DOI
14 J.-Y. Kim, S.-E. Bae, D.-H. Kim, Y.S. Choi, J.-W. Yeon, K. Song, High-temperature viscosity measurement of LiCl-KCl molten salts comprising actinides and lanthanides, Bull. Kor. Chem. Soc. 33 (2012) 3871-3874.   DOI
15 S.-C. Jeon, J.-W. Lee, J.-Y. Yoon, Y.-Z. Cho, Scaling up fabrication of UO2 porous pellets with a simulated fuel composition, J. Nucl. Fuel Cycle Waste Technol. 15 (2017) 343-353.   DOI
16 E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J.W. Lee, S.M. Jeong, J.-M. Hur, Effect of the $UO_2$ form on the electrochemical reduction rate in a $LiCl-Li_2O$ molten salt, J. Nucl. Mater. 437 (2013) 178-187.   DOI
17 S.-W. Kim, D.H. Heo, S.K. Lee, M.K. Jeon, W. Park, J.-M. Hur, S.-S. Hong, S.-C. Oh, E.-Y. Choi, A preliminary study of pilot-scale electrolytic reduction of $UO_2$ using a graphite anode, Nucl. Eng. Technol. 49 (2017) 1451-1456.   DOI
18 M.G. Adamson, D. Calef, R.W. Moir, Lithium nitrate as a fusion reactor coolant fluid?: a thermochemical assessment, J. Fusion Energy 5 (1986) 247-252.   DOI
19 C.H. Lee, T.-J. Kim, S. Park, S.-J. Lee, S.-W. Paek, D.-H. Ahn, S.-K. Cho, Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts, J. Nucl. Mater. 488 (2017) 210-214.   DOI
20 Y.H. Kang, J.H. Lee, S.C. Hwang, J.B. Shim, E.H. Kim, S.W. Park, Electrodeposition characteristics of uranium by using a graphite cathode, Carbon 44 (2006) 3113-3148.   DOI
21 T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobyashi, M. Tokiwai, An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing, J. Nucl. Sci. Technol. 34 (1997) 384-393.   DOI