DOI QR코드

DOI QR Code

Residual salt separation technique using centrifugal force for pyroprocessing

  • Received : 2018.04.23
  • Accepted : 2018.06.09
  • Published : 2018.10.25

Abstract

Pyroprocessing uses various molten salts during electrochemical unit processes. Reaction products after the electrochemical processes must contain a significant amount of residual salts to be separated. Vacuum distillation is a common method to separate the residual salts; however, its high operation temperature may cause side reactions. In this study, a simple rotation technique using centrifugal force was suggested to separate the residual salts from the reaction products at relatively low temperature compared to the distillation technique. When a reaction product container with porous wall rotates inside a vessel heated above the melting point of the residual salt, the residual salt in the liquid phase is separated through centrifugal force. It was shown that the $LiNO_3-Al_2O_3$ mixture can be separated by this technique to leave solid $Al_2O_3$ inside the container, with a separation efficiency of 99.4%.

Keywords

References

  1. R.C. Ewing, Long-term storage of spent nuclear fuels, Nat. Mater. 14 (2015) 252-257. https://doi.org/10.1038/nmat4226
  2. C. Braun, R. Forrest, Considerations regarding ROK spent nuclear fuel management options, Nucl. Eng. Technol. 45 (2013) 427-438. https://doi.org/10.5516/NET.06.2013.708
  3. C.E. Till, Y.I. Chang, Plentiful Energy: the Story of the Integral Fast Reactor, Create Space Independent Publishing Platform, 2011.
  4. H.-S. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E.-H. Kim, Pyroprocessing technology development at KAERI, Nucl. Eng. Technol. 43 (2011) 317-328. https://doi.org/10.5516/NET.2011.43.4.317
  5. T. Inoue, L. Koch, Development of pyroprocessing and its future direction, Nucl. Eng. Technol. 40 (2008) 183-190. https://doi.org/10.5516/NET.2008.40.3.183
  6. I.S. Kim, S.C. Oh, H.S. Lim, J.M. Hur, H.S. Lee, Distillation of LiCl from the $LiCl-Li_2O$ molten salt of the electrolytic reduction process, J. Radioanal. Nucl. Chem. 295 (2013) 1413-1417. https://doi.org/10.1007/s10967-012-1997-2
  7. J.-H. Lee, Y.-H. Kang, S.-C. Hwang, J.-B. Shim, B.-G. Ahn, E.-H. Kim, S.-W. Park, Electrodeposition characteristics of uranium in molten LiCl-KCl eutectic and its salt distillation behavior, J. Nucl. Sci. Technol. 43 (2006) 263-269. https://doi.org/10.1080/18811248.2006.9711088
  8. E.-Y. Choi, M.K. Jeon, J.-M. Hur, Reoxidation of uranium in electrochemically reduced simulated oxide fuel during residual salt distillation, J. Radioanal. Nucl. Chem. 314 (2017) 207-213. https://doi.org/10.1007/s10967-017-5404-x
  9. C.P. Wang, Z.S. Li, W. Fang, X.J. Liu, Thermodynamic database and the phase diagrams of the (U, Th, Pu)-X binary system, J. Phase Equilibria Diffusion 30 (2009) 535-552. https://doi.org/10.1007/s11669-009-9562-6
  10. S.-W. Kim, J.-M. Hur, D.H. Heo, S.-S. Hong, E.-Y. Choi, Residual salt separation of reaction products in pyroprocessing, in: Korean Radioactive Waste Society 2017 Fall Meeting, Oct. 18-20, 2017. Changwon, Republic of Korea.
  11. G.J. Janz, S.W. Lurie, G.L. Gardner, Viscosity of molten $LiNO_3$, J. Chem. Eng. Data 23 (1978) 14-16. https://doi.org/10.1021/je60076a003
  12. M. Wakao, K. Minami, A. Nagashima, Viscosity measurements of molten LiCl in the temperature rage 886-1275K, Int. J. Thermophys. 12 (1991) 223-230. https://doi.org/10.1007/BF00500748
  13. J.-Y. Kim, S.-E. Bae, D.-H. Kim, Y.S. Choi, J.-W. Yeon, K. Song, High-temperature viscosity measurement of LiCl-KCl molten salts comprising actinides and lanthanides, Bull. Kor. Chem. Soc. 33 (2012) 3871-3874. https://doi.org/10.5012/bkcs.2012.33.11.3871
  14. S.-C. Jeon, J.-W. Lee, J.-Y. Yoon, Y.-Z. Cho, Scaling up fabrication of UO2 porous pellets with a simulated fuel composition, J. Nucl. Fuel Cycle Waste Technol. 15 (2017) 343-353. https://doi.org/10.7733/jnfcwt.2017.15.4.343
  15. E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J.W. Lee, S.M. Jeong, J.-M. Hur, Effect of the $UO_2$ form on the electrochemical reduction rate in a $LiCl-Li_2O$ molten salt, J. Nucl. Mater. 437 (2013) 178-187. https://doi.org/10.1016/j.jnucmat.2013.01.306
  16. S.-W. Kim, D.H. Heo, S.K. Lee, M.K. Jeon, W. Park, J.-M. Hur, S.-S. Hong, S.-C. Oh, E.-Y. Choi, A preliminary study of pilot-scale electrolytic reduction of $UO_2$ using a graphite anode, Nucl. Eng. Technol. 49 (2017) 1451-1456. https://doi.org/10.1016/j.net.2017.05.004
  17. M.G. Adamson, D. Calef, R.W. Moir, Lithium nitrate as a fusion reactor coolant fluid?: a thermochemical assessment, J. Fusion Energy 5 (1986) 247-252. https://doi.org/10.1007/BF01050618
  18. C.M. Kramer, Z.A. Munir, J.V. Volponi, Simultaneous dynamic thermogrevimetry and mass spectrometry of the evaporation of alkali metal nitrates and nitrides, J. Therm. Anal. 27 (1983) 401-408. https://doi.org/10.1007/BF01914677
  19. C.H. Lee, T.-J. Kim, S. Park, S.-J. Lee, S.-W. Paek, D.-H. Ahn, S.-K. Cho, Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts, J. Nucl. Mater. 488 (2017) 210-214. https://doi.org/10.1016/j.jnucmat.2017.03.023
  20. Y.H. Kang, J.H. Lee, S.C. Hwang, J.B. Shim, E.H. Kim, S.W. Park, Electrodeposition characteristics of uranium by using a graphite cathode, Carbon 44 (2006) 3113-3148. https://doi.org/10.1016/j.carbon.2006.08.007
  21. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobyashi, M. Tokiwai, An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing, J. Nucl. Sci. Technol. 34 (1997) 384-393. https://doi.org/10.1080/18811248.1997.9733678

Cited by

  1. Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing vol.51, pp.7, 2019, https://doi.org/10.1016/j.net.2019.05.023
  2. A Brief Guide to the Structure of High-Temperature Molten Salts and Key Aspects Making Them Different from Their Low-Temperature Relatives, the Ionic Liquids vol.125, pp.24, 2018, https://doi.org/10.1021/acs.jpcb.1c01065