• Title/Summary/Keyword: Liquid Precursor

Search Result 183, Processing Time 0.029 seconds

Detection of flavonoid compounds by cell culture of Ginkgo biloba L (은행(Ginkgo biloba L.)의 세포배양에 의한 Flavonoid류의 검출)

  • 김광수;백윤웅
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Calli induced from Ginkgo bilha L. were cultured to investigate optimal culture conditions and identify the possibility production of useful compounds. Calli were obtained from leaves and stems of Ginkgo biloba seedlings and embryos on WP medium supplemented with 2mg/$\ell$ NAA and 5mg/$\ell$ kinetin. Chlorophyll-ricked green callus was inducted in MS liquid medium containing 1mg/$\ell$ NAA and 0.1mg/$\ell$ kinetin under light as 3 clones selected with origin. Embryo derived callus showed the highest growth rate. Analysis for flavonoids and their precursor was performed by TLC and EMS. A specific precursor of flavonoid was identified in callus, not in natural leaves. These findings indicate that tissue culture may produce rlavonoids.

  • PDF

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics (PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Fabrication of $Bi_{2}Sr_{2}CaCu_{2}O_{8}$ Superconducting Films by the LiReac-PreCu Method (급속반응공정에 의한 동 테이프 $Bi_{2}Sr_{2}CaCu_{2}O_{8}$)

  • 성현태;한상철;한영희;이준성;최희락
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • Wekk oriented $Bi_{2} Sr_{2} CaCu_{2} O_{8}$ suppercondcting thick films were fabricared on copper tape by LiReac-PreCu (liquid reaction between a Cu-free precousor and Cu tape) method. Cu-free precursor power which is composed of $Bi_{2}Sr_{2}Ca_{5}$ was printed on a copper tape by screen printing and was heat-treated. The speciment were partially in a molten state at the heat treatment temperature (85$0^{\circ}C$~87$0^{\circ}C$). The heat heat treatments for the reaction were performed in air or low oxygen pressure in several stages. XRD analyses of the resulting Bi2Sr2CaCu2O8 superconducting tapes show that the $Bi_{2} Sr_{2} CaCu_{2} O_{8}$ phase is dominant and a small amount of $Bi_{2} Sr_{2} Cu_{2} O_{6}$ phase is detected. Both phases are aligned in the c-axis direction.

  • PDF

The Fabrication of the Cu(In,Ga)Se2 Absorber Layer Using Binary Precursor Films Deposited by Chemical Vapor Deposition (화학기상증착된 이원계 화합물 프리커서를 이용한 Cu(In,Ga)Se2 흡수층의 제조)

  • Lee, Gyeong A;Kim, A Hyun;Cho, Sung Wook;Lee, Kang-Yong;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, the microstructure of the CVD-fabricated Cu(In,Ga)Se2 (CIGSe) absorber layer by simulating the stacking sequence used in a co-evaporation method, and changes solar cell performance were investigated. The absorber layer prepared by stacking CuSe and (In,Ga)Se between InSe is separated into Ga-free CuInSe2 and Ga-rich CIGSe, and transformed to CIGSe by selenization heat treatment with slight improvement in the the solar cell efficiency. However, in CVD, since the supply of liquid Cu-Se is not as active as in the co-evaporation method, the nanoocrystalline layer containing a large amount of Ga remained independently in the absorption layer, which acted as a cause of the loss of JSC and FF. Therefore, by using a precursor structure in which CuGa is sputter-deposited on a single layer of InSe deposited by CVD, performance parameters of VOC, JSC, and FF could be greatly improved.

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Synthesis of cobalt powder with polyol process (폴리올법을 이용한 미립 코발트 분말 합성)

  • Kim, Dong-Jin;Chung, Hun-Saeng;Woo, Sang-Duck;Lee, Jae-Jang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.290-296
    • /
    • 2001
  • Fin metal particles of uniform shape, narrow size distribution and high purity are increasingly needed for specific uses in high tech industrial applications. Polyol process for the preparation of monodispersed cobalt powders in micron size is described. In this process in inorganic precursor is reduced in liquid polyol under controlled conditions. The reducing agent is the polyol itself and reaction parameters such as the traction temperature, reaction time, addition of protective agent and concentration of the precursor are varied for controling particles size, shape and agglomeration of the metal particles. An optimum synthesis condition was achieved at E.G/DiE/G volume ratio 1:4,Co$(OH)_{2}$polyol molar ratio 0.08~0.32 reaction temperature $210^{\circ}C$, PVP/Co$(OH)_{2}$ molar ratio 0.4.

  • PDF

Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus : Isolation, Purification, and Characterization (참담치(Mytilus coruscus) 혈구(hemocyte) 유래 항균 펩타이드 mytilin B의 정제 및 특성 분석)

  • Lee, Min Jeong;Oh, Ryunkyoung;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;Park, Jung Youn;Seo, Jung-Kil;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1301-1315
    • /
    • 2018
  • We purified an antimicrobial peptide from the acidified hemocyte extract of Mytilus coruscus by $C_{18}$ reversed-phase high-performance liquid chromatography (RP-HPLC). The peptide was 4041.866 Da based on matrix-assisted laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS) and the 25 amino acids of the N-terminus sequence were identified. Comparison of this sequence of the purified peptide with the N-terminus sequences of other antimicrobial peptides revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We also identified a 312 bp open-reading frame (ORF) encoding 103 amino acids based on the obtained amino acid residues. The nucleotide sequence of this ORF and the amino acid sequence also revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We synthesized two antimicrobial peptides with an alanine residue in the C-terminus, and designated them mytilin B1 and B2. These two antimicrobial peptides showed antimicrobial activity against gram-positive bacteria, including Bacillus cereus and Streptococcus parauberis (minimal effective concentration, MECs $41.6-89.7{\mu}g/ml$), gram-negative bacteria, including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Pseudomonas aeruginosa, and Vibrio ichthyoenteri (MECs $7.4-39.5{\mu}g/ml$), and the fungus Candida albicans (MECs $26.0-31.8{\mu}g/ml$). This antimicrobial activity was stable under heat and salt conditions. Furthermore, the peptides did not exhibit significant hemolytic activity or cytotoxic effects. These results suggest that mytilin B could be applied as alternative antibiotic agent, and they add to the understanding of the innate immunity of hard-shelled mussels.

Metalorganic Chemical Vapor Deposition of Copper Films on TiN Substrates Using Direct Liquid Injection of (hfac)Cu(vtmos) Precursor ((hfac)Cu(vtmos)의 액체분사법에 의한 TiN 기판상 구리박막의 유기금속 화학증착 특성)

  • Jun, Chi-Hoon;Kim, Youn-Tae;Kim, Dai-Ryong
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1196-1204
    • /
    • 1999
  • We have carried out copper MOCVD(metalorganic chemical vapor deposition) onto the reactive sputtered PVD-TiN and rapid thermal converted RTP-TiN substrates using direct liquid injection for effective delivery of the (hfac)Cu(vtmos) [$C_{10}H_{13}O_{5}CuF_{6}$Si: 1,1,1,5,5,5-hexafluoro-2,4- pentadionato (vinyltrimethoxysilane) copper (I)] precursor. Especially, the influences of deposition conditions and the substrate type on growth rate, crystal structure, microstructure, and electrical resistivity of copper deposits have been discussed. It is found that the film growth with 0.2ccm precursor flow rate become mass-transfer controlled up to Ar flow rate of 200sccm and pick-up rate controlled at a vaporizer above 1.0Torr reactor pressure. The surface-reaction controlled region from 155 to 225$^{\circ}C$ at 0.6Torr reactor pressure results in the apparent activation energies of 12.7~14.1kcal/mol, and above 224$^{\circ}C$ the growth rate with $H_2$ addition could be improved compared to the pure Ar carrier. The Cu/RTP-TiN structures which have high copper nucleation density in initial stage of growth show more pronounced (111) preferred orientations and lower electrical resistivities than those on PVD-TiN. The variation of electrical resistivity with substrate temperature reflects the three types of film microstructure changes, showing the lowest value for the deposit at 165$^{\circ}C$ with small grains of good contacts.

  • PDF

Preparation of cobalt oxide(Co3O4·CoO) ultra fine particles using cobalt(II) chloride hexahydrate and crystalline cellulose as a starting materials (Cobalt(II) chloride hexahydrate와 결정성 셀룰로오스를 출발물질로 사용한 산화코발트(Co3O4·CoO) 초미세입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 2023
  • Cobalt oxide (Co3O4·CoO) ultra fine particles were synthesized by liquid phase precursor method. cobalt(II) chloride hexahydrate (CoCl2·6H2O) was as a starting material. A plant-derived crystalline cellulose was used as impregnating materials. A impregnated precursor was calcined at a temperature of 350 to 900℃ to obtain cobalt oxide particles having a particle size of 1 to 10㎛. The crystallization process and morphology according to the calcination temperature were examined, and the properties of the synthesized powder were evaluated using SEM and XRD. It was confirmed that a crystal phase of Co3O4 began to form around 350℃ and crystal growth occurred up to 900℃. At a temperature above 500℃, the Co3O4 crystal was changed to another crystal phase CoO.

Simultaneous Characterization of Sofalcone and Its Metabolite in Human Plasma by Liquid Chromatography -Tandem Mass Spectrometry

  • Han, Sang-Beom;Jang, Moon-Sun;Lee, Hee-Joo;Lee, Ye-Rie;Yu, Chong-Woo;Lee, Kyung-Ryul;Kim, Ho-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.729-734
    • /
    • 2005
  • A sensitive and selective method for quantitation of sofalcone and its active metabolite in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS). Plasma samples were transferred into 96-well plate using an automated sample handling system and spiked with 10 $\mu$L of 2 $\mu$g/mL $d_3$-sofalcone and $d_3$-sofalcone metabolite solutions (internal standard), respectively. After adding 0.5 mL of acetonitrile to the 96-well plate, the plasma samples were then vortexed for 30 sec. After centrifugation, the supernatant was transferred into another 96-well plate and completely evaporated at 40 ${^{\circ}C}$ under a stream of nitrogen. Dry residues were reconstituted with mobile phase and were injected into a $C_{18}$ reversed-phase column. The limit of quantitation of sofalcone and its metabolite was 2 ng/mL, using a sample volume of 0.2 mL for analysis. The reproducibility of the method was evaluated by analyzing 10 replicates over the concentration range of 2 ng/mL to 1000 ng/mL. The validation experiments of the method have shown that the assay has good precision and accuracy. Sofalcone and its metabolite produced a protonated precursor ion ([M+H]$^+$) of m/z 451 and 453, and a corresponding product ion of m/z 315 and 317, respectively. Internal standard ($d_3$-sofalcone and $d_3$-sofalcone metabolite) produced a protonated precursor ion ([M+H]$^+$) of m/z 454 and 456 and a corresponding product ion of m/z 315 and 317, respectively. The method has been successfully applied to a pharmacokinetic study of sofalcone and its active metabolite in human plasma.