• Title/Summary/Keyword: Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Search Result 292, Processing Time 0.033 seconds

Development of Isotope Dilution LC-MS/MS Method for Accurate Determination of Arsenobetaine in Oyster Certified Reference Material

  • Lee, Woo Young;Yim, Yong-Hyeon;Hwang, Euijin;Lim, Youngran;Kim, Tae Kyu;Lee, Kyoung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.821-827
    • /
    • 2014
  • An isotope dilution liquid chromatography tandem mass spectrometry (ID LC-MS/MS) method has been developed and applied to the determination of arsenobetaine (AsB, ${(CH_3)_3}^+AsCH_2COO^-$) from oyster candidate certified reference material (CRM). The exact matching isotope dilution approach was adopted for accurate determination of AsB using $^{13}C_2$-labeled AsB as an internal standard. Efficiencies of different AsB extraction methods were evaluated using a codfish reference material and a simple sonication method was selected as the method of choice for the certification of the oyster candidate CRM. The hydrophilic interaction liquid chromatography (HILIC) combined with electrospray ionization tandem mass spectrometry (ESI/MS/MS) in selected reaction monitoring (SRM) mode was optimized for adequate chromatographic retention and robust quantification of AsB from codfish and oyster samples. By analyzing 12 subsamples taken from each 12 bottles systematically selected from the whole oyster CRM batch, the certified value of AsB was determined as $6.60mg{\cdot}kg^{-1}{\pm}0.31mg{\cdot}kg^{-1}$ and it showed excellent between-bottle homogeneity of less than 0.42%, which is represented by relative standard deviation of 12 bottles from the CRM batch. The major source of uncertainty was the certified value of the AsB standard solution.

Comparative Proteomic Analysis of Human Amniotic Fluid Supernatants with Down Syndrome Using Mass Spectrometry

  • Park, Ji-Sook;Cha, Dong-Hyun;Jung, Jin-Woo;Kim, Young-Hwan;Lee, Sook-Hwan;Kim, Young-Jun;Kim, Kwang-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.959-967
    • /
    • 2010
  • Down syndrome (DS) is an abnormality of the 21st chromosome that commonly occurs in children born to older women. Thus, amniotic fluid (AF) is usually collected from such women for prenatal diagnosis. This study analyzed human AF supernatants (AFS) using a mass spectrometric (MS) approach to search for candidate biomarkers of a DS pregnancy. The AFS were collected from older pregnant women at weeks 16-18 of their gestation by amniocentesis for cytogenetic analysis. The AFS from the pregnancies carrying DS (n=4) or chromosomally normal (n=6) fetuses, as revealed by the cytogenetic analysis, were then subjected to global protein profiling based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Affinity chromatography was also applied prior to the LC-ESI-MS/MS to minimize the masking effect of highly abundant albumin and immunoglobulin and thereby increase the diversity of the identified proteins. As a result, at least 30 new AFS proteins were identified and 44 AFS proteins were found to be differentially expressed between the DS and normal cases, where 6 of the proteins were unique to the DS cases and 11 were unique to the chromosomally normal cases. In addition, in the DS cases, 19 AFS proteins were downregulated and 8 were upregulated to varying degrees. A Western blot analysis confirmed the LC-ESI-MS/MS data, indicating that the combined detection of apolipoprotein A-II (apoA-II) and alpha-fetoprotein (AFP) could be a potential tool for diagnosing DS cases.

Identfication of Phase I and Phase II Metabolites of Hesperetin in Rat Liver Microsomes by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry

  • Kim, Un-Yong;Han, Sang-Beom;Kwon, Oh-Seung;Yoo, Hye-Hyun
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.20-23
    • /
    • 2011
  • The purpose of this study is to investigate the in vitro metabolism of hesperetin, a bioflavonoid. Hesperetin was incubated with rat liver microsomes in the presence of NADPH and UDP-glucuronic acid for 30 min. The reaction mixture was analyzed by liquid chromatography-ion trap mass spectrometer and the chemical structures of hesperetin metabolites were characterzed based on their MS/MS spectra. As a result, a total of five metabolites were detected in rat liver microsomes. The metabolites were identified as a de-methylated metabolite (eriodictyol), two hesperetin glucuronides, and two eriodictyol glucuronides.

Simultaneous determination of carbaryl & organophosphorous pesticides in water by liquid chromatography-tandem mass spectrometry (LC/MS/MS를 이용한 수중의 카바릴·유기인계 농약 동시분석)

  • Park, Keun-Young;Shin, Jung-Chul;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Carbaryl and seven organophosphorous pesticides were analyzed simultaneously using on-line solid phase extraction (on-line SPE) coupled with liquid chromatography tandem mass spectrometry (LC/MS/MS). The target pesticides are Carbaryl, Methyl demeton, Fenitrothion, Malathion, Parathion, Phenthoate, Diazinon, and EPN. This method includes the direct injection of $500{\mu}L$ in the water sample, a 15 min separation period using a rapid resolution liquid chromatography system with on-line SPE, and detection through electrospray ionization (ESI) positive mode. The percentage of recovery of all pesticides ranged from 85.3 % to 100 %. This method showed an accuracy of ${\geq}90.0%$, possessing limits of detection and quantification within 0.05 to $0.28{\mu}g/L$ and 0.16 to $0.89{\mu}g/L$, respectively. The correlation coefficients (r) for the calibration curves within a range of 0.5 to $8.0{\mu}g/L$ were higher than 0.99. The evaluation results showed the efficacy of the method for all contents, and no pesticides were detected in the water quality sample.

Simultaneous Determination of Methylphenidate, Amphetamine and their Metabolites in Urine using Direct Injection Liquid Chromatography-Tandem Mass Spectrometry

  • Kwon, Woonyong;Suh, SungIll;In, Moon Kyo;Kim, Jin Young
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.104-109
    • /
    • 2014
  • Nonmedical use of prescription stimulants such as methylphenidate (MPH) and amphetamine (AP) by normal persons has been increased to improve cognitive functions. Due to high potential for their abuse, reliable analytical methods were required to detect these prescription stimulants in biological samples. A direct injection liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and implemented for simultaneous determination of MPH, AP and their metabolites ritalinic acid (RA) and 4-hydroxyamphetamine (HAP) in human urine. Urine sample was centrifuged and the upper layer ($100{\mu}L$) was mixed with $800{\mu}L$ of distilled water and $100{\mu}L$ of internal standards ($0.2{\mu}g/mL$ in methanol). The mixture was then directly injected into the LC-MS/MS system. The mobile phase was composed of 0.2% formic acid in distilled water (A) and acetonitrile (B). Chromatographic separation was performed by using a Capcell Pak MG-II C18 ($150mm{\times}2.0mm$ i.d., $5{\mu}m$, Shiseido) column and all analytes were eluted within 5 min. Linear least-squares regression with a 1/x weighting factor was used to generate a calibration curve and the assay was linear from 20 to 1500 ng/mL (HAP), 40-3000 ng/mL (AP and RA) and 2-150 ng/mL (MPH). The intra- and inter-day precisions were within 16.4%. The intra- and inter-day accuracies ranged from -15.6% to 10.8%. The limits of detection for all the analytes were less than 4.7 ng/mL. The suitability of the method was examined by analyzing urine samples from drug abusers.

Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass Spectrometry

  • Ji, Dong Yoon;Lee, Chang-Wan;Park, Se Hee;Lee, Eun Jig;Lee, Do Yup
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.109-113
    • /
    • 2017
  • Single analytical procedure including extraction, liquid chromatography, and mass spectrometric analysis was evaluated for the simultaneous measurement of lysophospholipids (LPLs). LPLs, particularly, lysophosphatidic acids (LPA) and sphingosine 1-phosphate (S1P) are lipid messengers ubiquitously found in various biological matrix. The molecular species mediate important physiological roles in association with many diseases (e.g. cancer, inflammation, and neurodegenerative disease), which emphasize the significance of the simple and reliable analytical method for biomarker discovery and molecular mechanistic understanding. Thus, we developed analytical method mainly focusing on, but not limited by those lipid species S1P and LPA using reverse phase liquid chromatography-tandem mass spectrometry (RPLC-ESI-MS-MS). Extraction method was modified based on Folch method with optimally minimal level of ionization additive (ammonium formate 10 mM and formic acid). Reverse-phase liquid-chromatography was applied for chromatographical separation in combination with negative ionization mode electrospray-coupled Orbitrap mass spectrometry. The method validation was performed on human blood plasma in a non-targeted lipid profiling manner with full-scan MS mode and data-dependent MS/MS. The proposed method presented good inter-assay precision for primary targets, S1P and LPA. Subsequent analysis of other types of LPLs identified a broad range of lysophosphatidylcholines (LPCs) and lysophosphatidyl-ethanolamines (LPEs).

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

A Survey of Total Aflatoxins in Food Using High Performance Liquid Chromatography-Fluorescence Detector (HPLC-FLD) and Liquid Chromatography Tandem Mass Spectrometry(LC-MS/MS) (HPLC-FLD 및 LC-MS/MS에 의한 식품 중 총아플라톡신 오염실태 조사)

  • Jang, Mi-Ran;Lee, Chang-Hee;Cho, Sung-Hye;Park, Joon-Shik;Kwon, Eun-Young;Lee, Eun-Jin;Kim, So-Hee;Kim, Dai-Byung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.488-493
    • /
    • 2007
  • A survey for total aflatoxins (aflatoxins $B_1$, $B_2$, $G_1$, and $G_2$) was conducted on 245 cereals and processed cereal products, and 148 nuts and processed nut products in Korea, for a total of 393 commercialized ed samples. The total aflatoxins were quantified by the immunoaffinity column clean-up method with high performance liquid chromatography (HPLC) - fluorescence detection (FLD), and were confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Total aflatoxins(AFs) were detected in 37 samples (9.4% incidence), including 2 millet samples, 1 mixed cereal (sunsik), 1 powdered malt sample, 2 processed cereal products, 6 peanut samples, 22 peanut butter samples, and 1 sample each of almonds, adlay tea, and a processed nut product. The contamination levels were $0.04-2.65{\mu}g/kg$ for aflatoxin $B_1$, and $0.04-5.51{\mu}g/kg$ for total aflatoxins. Finally, LC-MS/MS analysis of the contaminated samples was conducted to confirm the detected aflatoxins, and all 37 samples showing aflatoxins by HPLC-FLD were confirmed by LC-MS/MS.

Determination of S- and R-Amlodipine in Rat Plasma using LC-MS/MS After Oral Administration of S-Amlodipine and Racemic Amlodipine

  • Yoo, Hye-Hyun;Kim, Tae-Kon;Lee, Bong-Yong;Kim, Dong-Hyun
    • Mass Spectrometry Letters
    • /
    • v.2 no.4
    • /
    • pp.88-91
    • /
    • 2011
  • The pharmacokinetic properties of S-amlodipine were studied using racemic amlodipine and single S-enantiomer (SK310) administration to rats. Plasma levels of the drug were determined using chiral liquid chromatography coupled with tandem mass spectrometry following solid phase extraction. The stereospecific analysis of amlodipine was performed on an ${\alpha}$-acid glycoprotein (AGP) column using a mobile phase comprising 10 mM ammonium acetate (pH 4.0) and propanol at a flow rate of 0.2 mL/min. This method was used to perform a comparative study of the pharmacokinetics of amlodipine and SK310. The results revealed that the pharmacokinetic profile of S-amlodipine after the administration of SK310 was comparable to that following the administration of the racemic mixture.