• Title/Summary/Keyword: Lipschitz nonlinear systems

Search Result 33, Processing Time 0.034 seconds

UNIFORMLY LIPSCHITZ STABILITY OF PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Lee, Ji Yeon;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.273-284
    • /
    • 2017
  • In this paper, we study that the solutions to perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$ have uniformly Lipschitz stability by imposing conditions on the perturbed part ${\int_{t0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using integral inequalities.

STABILITY IN VARIATION FOR NONLINEAR VOLTERRA DIFFERENCE SYSTEMS

  • Choi, Sung-Kyu;Koo, Nam-Jip
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.101-111
    • /
    • 2001
  • We investigate the property of h-stability, which is an important extension of the notions of exponential stability and uniform Lipschitz stability in variation for nonlinear Volterra difference systems.

  • PDF

On asymptotic Stability in nonlinear differential system

  • An, Jeong-Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.62-66
    • /
    • 2006
  • We investigate various $\Phi(t)-stability$ of comparison differential equations and we abtain necessary and/or sufficient conditions for the uniform asymptotic and exponential asymptotic stability of the nonlinear differential equation x'=f(t, x).

  • PDF

Robust H(sup)$\infty$ FIR Sampled-Data Filtering for Uncertain Time-Varying Systems with Lipschitz Nonlinearity

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • This paper presents the results of the robust H(sub)$\infty$ FIR filtering for a class of nonlinear continuous time-varying systems subject to real norm-bounded parameter uncertainty and know Lipschitz nonlinearity under sampled measurements. We address the problem of designing filters, using sampled measurements, which guarantee a prescribed H(sub)$\infty$ performance in continuous time-varying context, irrespective of the parameter uncertainty and unknown initial states. The infinite horizon causal H(sub)$\infty$FIR filter are investigated using the finite moving horizon in terms of two Riccati equations with finite discrete jumps.

  • PDF

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • CHOI, SANG IL;GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This paper shows that the solutions to the perturbed differential system $y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$ have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

AN ASYMPTOTIC TRACKING CONTROL STRATEGY FOR MECHANICAL SYSTEMS WITH UNCERTAIN NONLINEAR FRICTION

  • Yang, Hyun-Suk;Hong, Bum-Il;Yang, Mee-Hyea
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.369-378
    • /
    • 2008
  • Modeling nonlinear friction effects is a challenging problem. In this paper, a tracking controller is proposed for a system with uncertain nonlinear friction dynamics. Instead of using a specific friction model, we assume that the friction dynamics are represented by a function, which is unknown except its being continuously differentiable and Lipschitz continuous with known Lipschitz constants. It is shown that the scheme results in friction identification and trajectory position and velocity tracking. The analysis is done using Lyapunov-based stability method.

THE CONVERGENCE BALL OF INEXACT NEWTON-LIKE METHOD IN BANACH SPACE UNDER WEAK LIPSHITZ CONDITION

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • We present a local convergence analysis for inexact Newton-like method in a Banach space under weaker Lipschitz condition. The convergence ball is enlarged and the estimates on the error distances are more precise under the same computational cost as in earlier studies such as [6, 7, 11, 18]. Some special cases are considered and applications for solving nonlinear systems using the Newton-arithmetic mean method are improved with the new convergence technique.

Reduced-Order Observer Design for Nonlinear Systems Using Input Output Linearization Transformation (입출력선형화 상태변환을 이용한 비선형 시스템의 저차 관측기 설계)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we present a reduced-order observer for a class of nonlinear systems based on the input output linearization. While the most results in the literature presented full-order nonlinear observer, we proposed a procedure for the design of reduced-order observer far nonlinear systems that are not necessarily observable. Assuming that there exists a global observer fer internal dynamics and that certain functions are globally Lipschitz, we can design a global reduced-order observer An illustrative example is included that demonstrate the design procedure of the proposed reduced-order observer.

Stability of nonlinear differential system by Lyapunov method

  • An, Jeong-Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.54-59
    • /
    • 2007
  • We abtain some stability results for a very general differential system using the method of cone valued vector Lyapunov functions and conversely some sufficient conditions for existence of such vector Lyapunov functions.

  • PDF

Observer Design for Discrete-Time Nonlinear Systems with Output Delay (출력지연을 갖는 이산시간 비선형 시스템의 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.26-30
    • /
    • 2012
  • This paper presents the observer design method for discrete-time nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the discrete-time nonlinear error dynamics with time delay can be transformed into the discrete-time linear one with time delay. Sufficient conditions for existence of state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.