• Title/Summary/Keyword: Liposomes

Search Result 339, Processing Time 0.022 seconds

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

Comparison of the stability between branched-chain amino acid (BCAA)-coated liposome and double emulsion (분지쇄아미노산(BCAA)이 포집된 더블에멀션과 리포좀의 안정성 비교)

  • Lee, YunJung;Lee, SangYoon;Shin, Hyerin;Kang, Guhyun;Wi, Gihyun;Ko, Eun Young;Cho, Youngjae;Choi, Mi-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.636-641
    • /
    • 2018
  • This study was conducted to compare the stability between branched-chain amino acid (BCAA)-encapsulated liposome and double emulsion (DE). Liposome was produced by high-speed homogenization and ultrasonication whereas DE was prepared by homogenizing with surfactants. All samples were fixed at pH 4 and 7 and stored at 4, 25, and $40^{\circ}C$ for 5 days. Encapsulation efficiency and cumulative release rate were measured under $4^{\circ}C$ and at $25^{\circ}C$. The results showed that the size of BCAA-coated liposome was greater at pH 7 than at pH 4. The zeta-potential value of BCAA-coated liposome was greater at pH 4 than at pH 7. It was supposed that the negatively charged liposomes attracted the positively charged BCAAs at pH 4 resulting in the formation of the vesicle with smaller size. Particle size of DE was smaller than $100{\mu}m$. Encapsulation efficiencies of BCAA in DE or liposome were over 97%, approximately, and the cumulative release rates of them were below 30% for 5 days.

Stabilization of Tocopheryl Acetate of Swollen Micelle by Poloxamer (Poloxamer를 이용한 Swollen Micelle의 Tocopheryl Acetate 안정화)

  • Kim, Mi-Seon;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.609-622
    • /
    • 2019
  • When the surfactant is dissolved in an aqueous solution, it forms aggregate called micelles (<20 nm) in the solution, and micelles can form the solubilized formulation by supporting the active ingredient therein. Swollen micelles are formulations capable of carrying larger amounts of active ingredient than conventional solubilized formulations at 50~100 nm. Unlike liposomes or nanoemulsions, which require a separate process such as high pressure emulsification, Swollen micelle is a more efficient method of solubilization and particle formation from a productive point of view. In this study, stabilization experiments on swollen micelle formulations were carried out using poloxamer 407, and then optimized formulation experiments for tocopheryl acetate components were performed using Response Surface Methodology (RSM). Tocopheryl acetate, a surfactant that affects solubilization and an active substance, were set as a factor and the correlation between them was confirmed. As the evaluation method, stability and particle size distribution and size were confirmed by temperature and time, and the structure and shape of the swollen micelle carrying the active ingredient were confirmed by FIB. These results show that poloxamer 407 0.500%, octyldodeceth-16 0.387% and tocopheryl acetate 0.945% are the most optimized prescriptions for swollen micelle stabilized with tocopheryl acetate.

Cosmetic Efficacy of Supercritical Cannabis sativa Seed Extracts and Enhancement of Skin Permeation (초임계 대마종자 추출물의 화장품 효능과 경피흡수증진 효과)

  • Lee, Kwang Won;Park, Shinsung;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.683-691
    • /
    • 2021
  • The purpose of this study is to measure the yield and to evaluate the physiological activity of Cannabis sativa seed(Hemp seed) extracts extracted using a density fluctuation supercritical carbon dioxide for each temperature condition-30℃(HSSE30), 45℃(HSSE45), 60℃(HSSE60), and to enable dissolution of the poorly water-soluble extracts by liposome formulation and to enhance the skin permeability. As a result of the yield measurement, HSSE60 showed the highest yield, and in the antioxidant activities, HSSE45 had the highest total polyphenol content, and showed the highest DPPH, ABTS+ radical scavenging activities at the highest concentration of the extracts. As a result of the antimicrobial susceptibility testing, a clear zone appeared only in the Propionibateium acnes strain. It was confirmed that particle size was reduced and the absolute value of the zeta potential increased in the case of the formulation in which the extracts were in liposomes than in the formulation in which the extracts were dissolved in deionized water, and the skin permeability was improved. Based on these experimental results, we confirmed the possibility of using the hemp seed supercritical carbon dioxide extracts, a poorly water-soluble extract, can be applied as a functional natural material for cosmetics.

Preparation and Characterization of Lipid Nanoparticles Containing Fat-Soluble Vitamin C Derivatives and Gallic Acid (지용성 비타민 C 유도체 및 갈릭산을 함유한 지질나노입자 제조 및 특성)

  • Ji Soo Ryu;Ja In Kim;Jae Yong Seo;Young-Ah Park;Yu-Jin Kang;Ji Soo Han;Jin Woong Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • Lipid nanoparticles (LNPs) are a stable and an effective system that protects cell-impermeable biologically active compounds such as nucleic acids, proteins, and peptides against degradation caused by subtle environmental changes. This study focuses on developing LNPs encapsulating gallic acid (GA), an antioxidant, to effectively prolong the half-life of tetrahexyldecyl ascorbate (THDC), a oil-soluble vitamin C derivative. These LNPs were synthesized in small, uniform sizes at room temperature and pressure conditions using a microfluidics chip. Compared to liposomes manufactured under high pressure and high temperature conditions through conventional microfluidizers, LNPs manufactured through microfluidics chips had excellent dispersion and temperature stability, and improved skin absorption as well as improved oxidative stability of fat-soluble vitamin C derivatives. Future studies will focus on ex vivo and in vivo evaluations to study skin improvement to further validate these results.

A Study on DPPC Lipid Membrane and its Carbohydrate Mixture Membrane for Preparation of a Functional Membrane (기능성 막 제조를 위한 DPPC 지질막과 탄수화물 혼합막에 관한 연구)

  • Jeong, Teak-Suh;Rhee, Jae-Seong;Lee, Ki-Chang;Hong, Jang-Hoo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.252-260
    • /
    • 1996
  • In this article, we investigate into the structural changes of liposome to design its functional membranes by the synthesis of two types of liposomes, DPPC liposome and DTAB of hydrocarbon substance/DPPC liposome. The changes of membrane structures are evaluated by the CF fluorescent intensity measured above and below the phase transition temperature of the membrane, $t_c=41^{\circ}C$. CF fluorescent intensities are enhanced by the CF leakage from DPPC liposome at $45^{\circ}C$, while no changes are observed at $20^{\circ}C$. Under the same conditions, it is observed that the intensity enhanced by CF leakage from DPPC/DTAB liposome is larger than that of DPPC liposome alone, which suggests that DPPC/DTAB liposome has irregular arrangement. Under the presence of $Ca^{2+}$, Quin 2 fluorescent intensity in either DPPC liposome or DPPC/DTAB liposome is significantly increasing at $45^{\circ}C$, while almost none of the changes are observed at $20^{\circ}C$. The fluorescent intensity of DPPC liposome turns out to be larger than that of DPPC/DTAB liposome, which suggests that the DPPC/DTAB liposome is structurally more stable than the DPPC liposome. Additionally, when the analysis is done to observe changes in the shapes of membrane surfaces with ANS fluorescent, ANS fluorescent under DPPC or DPPC/DTAB liposome shows each of different appearances at $45^{\circ}C$ and $20^{\circ}C$ respectively. This result indicates that its respective membrane fluidity is changing above and below of the designated temperatures in phase transition. As to the magnitude of change of its membrane fluidity, DPPC liposome is much larger than DPPC/DTAB liposome. As far as the temperature in phase transition measured by DSC are concerned, it is $41^{\circ}C$ and $32^{\circ}C$ for DPPC and DPPC/DTAB liposome respectively, which suggests that DPPC/DTAB liposome has an irregular molecular arrangement in its structure. That is, it is summed up that DPPC/DTAB turns out to be structurally stable, even so, its structure is irregularly arranged.

  • PDF

Optimization and Scale-up of Fish Skin Peptide Loaded Liposome Preparation and Its Storage Stability (어피 펩타이드 리포좀 대량생산 최적 조건 및 저장 안정성)

  • Lee, JungGyu;Lee, YunJung;Bai, JingJing;Kim, Soojin;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2017
  • Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at $4^{\circ}C$. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.