Browse > Article
http://dx.doi.org/10.12925/jkocs.2019.36.2.609

Stabilization of Tocopheryl Acetate of Swollen Micelle by Poloxamer  

Kim, Mi-Seon (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.36, no.2, 2019 , pp. 609-622 More about this Journal
Abstract
When the surfactant is dissolved in an aqueous solution, it forms aggregate called micelles (<20 nm) in the solution, and micelles can form the solubilized formulation by supporting the active ingredient therein. Swollen micelles are formulations capable of carrying larger amounts of active ingredient than conventional solubilized formulations at 50~100 nm. Unlike liposomes or nanoemulsions, which require a separate process such as high pressure emulsification, Swollen micelle is a more efficient method of solubilization and particle formation from a productive point of view. In this study, stabilization experiments on swollen micelle formulations were carried out using poloxamer 407, and then optimized formulation experiments for tocopheryl acetate components were performed using Response Surface Methodology (RSM). Tocopheryl acetate, a surfactant that affects solubilization and an active substance, were set as a factor and the correlation between them was confirmed. As the evaluation method, stability and particle size distribution and size were confirmed by temperature and time, and the structure and shape of the swollen micelle carrying the active ingredient were confirmed by FIB. These results show that poloxamer 407 0.500%, octyldodeceth-16 0.387% and tocopheryl acetate 0.945% are the most optimized prescriptions for swollen micelle stabilized with tocopheryl acetate.
Keywords
Micelle; Swollen micelle; Poloxamer 407; Tocopheryl acetate; Response Surface Methodology; FIB;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. J. Kim, Y. L. Jeong, J. J Nam, J. H. Jang, H. L. Yeo, M. S. Yoon, K. J. Yoo, and J. B Lee, "A study of stabilization for insoluble active ingredients using swollen micelles", J. Soc. Cosmet. Sci. Korea, Vol. 42, No. 1, pp. 9-13, (2016).   DOI
2 C. O. Rangel-Yagui, A. Pessoa-Jr, L. C. Tavares, "Micellar solubilization of drugs", J. Pharm. Pharmaceut. Sci., Vol. 8, No. 2, pp. 147-163, (2005).
3 M. S. Kim, "A phenomenological study on micellization and solubilization", J. of the Korean Chemical Society, Vol. 33, No. 5, pp. 459-467, (1989).
4 S. K. Swafford, W. R. Bergmann, K. G. Migliorese, J. L. Lichtin, A. Sakr, "Characterization of swollen micelles containing linoleic acid in a microemulsion system", J. Soc. Cosmet. Chem., Vol. 42, pp. 235-247, (1991).
5 E. Ruckenstein, R. Krishnan, "Swollen micellar models for solubilization", J. of Colloid and Interface Science, Vol. 71, No. 2, pp. 321-335, (1979).   DOI
6 G. S. Kwon, M. Naito, K. Kataoka, M. Yokoyama, Y. Sakurai, T. Okano, "Block copolymer micelles as vehicles for hydrophobic drugs", Colloids and Surfaces B, Blointerfaces, Vol. 4, No. 2, pp. 429-434, (1994).
7 K. Kataoka, A. Harada, Y. Nagasaki, "Block copolymer micelles for drug delivery: design, characterization and biological significance", Advanced Drug Delivery Reviews, Vol. 64, pp. 37-48, (2012).   DOI
8 M. Manik, G. Farid, M. Kruk, "Swollen mixed Pluronic surfactant micelles as templates for mesoporous nanotubes with diverse bridged-organosilica frameworks", J. of Colloid and Interface Science, Vol. 524, pp. 445-455, (2018).   DOI
9 M. N. Freitas, M. Farah, R. E. S. Bretas, E. Ricci-Junior, J. M. Marchetti, "Rheological characterization of Poloxamer 407 nimesulide gels", J. of Colloid and Interface Science, Vol. 27, No. 1, pp. 113-118, (2006).
10 M. Manik, G. Farid, M. Kruk, "Swollen mixed Pluronic surfactant micelles as templates for mesoporous nanotubes with diverse bridged-organosilica frameworks", J. of Colloid and Interface Science, Vol. 524, pp. 445-455, (2018).   DOI
11 H. Almeida, M. H. Amaral, P. Lobao, J. M. S. Lobo, "Pluronic F-127 and Pluronic lecithin organogel (PLO): main features and their applications in topical and transdermal administration of drugs", J. Pharm. Pharmaceut. Sci., Vol. 15, No. 2, pp. 592-605, (2012).   DOI
12 H. Alsaab, S. P. Bonam, D. Bahl, P. Chowdhury, K. Alexander, S. HS. Boddu, "Organogels in drug delivery: a special emphasis on organogels Pluronic lecithin", J. Pharm. Pharm. Sci., Vol. 19, No. 2, pp. 252-273, (2016).   DOI
13 J. H. Kim, H. J. Yang, B. R. Won, Y. J. Ahn, M. K. Kang, S. N. Park, "Preparation of vitamin E acetate nano-emulsion and in vitro research regarding vitamin E acetate transdermal delivery system which use Franz diffusion cell", J. Soc. Cosmet. Scientists Korea, Vol. 35, No. 2, pp. 91-101, (2009).
14 S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandᾶo, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, W. N. L. dos Santos, "Box-Behnken design: an alternative for the optimization of analytical methods", Analytica Chimica Acta, Vol. 592, No. 2, pp. 179-186, (2007).
15 M. A. Bezerraa, R. E. Santelli, E. P. Oliveiraa, L. S. Villar, L. A. l. Escaleiraa, "Response surface methodology (RSM) as a tool for optimization in analytical chemistry", Talanta, Vol. 76, pp. 965-977, (2008).   DOI
16 K. Y. Lee, G. S. Choi, T. W. Kim, K. H. Cho, D. J. Kang, S. T. Kim, D. J. Jang, "Modeling and optimization of dough properties using response surface design", Food Eng. Prog., Vol. 21, No. 2, pp. 132-137, (2017).   DOI
17 I. M. Yang, G. T. Oh, C. B. Yu, I. G. Hwang, "Design and analysis of experiments.",, pp. 432-433, Minyoungsa, (2015).
18 S. Rane, B. Prabhakar, "Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level Box-Behnken design", Indian Journal of Pharmaceutical Sciences, Vol. 75, No. 4, pp. 420-426, (2013).   DOI