• Title/Summary/Keyword: Lipid adsorption

Search Result 23, Processing Time 0.019 seconds

Effects of Adsorption Condition on Fat-binding Characteristics of Chitosan (흡착조건이 키토산의 지방질 흡착 특성에 미치는 영향)

  • LEE Keun-Tai;SONG Ho-Su;PARK Seong-Min;KANG Ok-Ju;CHEONG Hyo-Sook
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.359-365
    • /
    • 2004
  • To study the lipid adsorption characteristic of chitosans with different molecular weights and the degrees of deacetylation, in vitro test and near-infrared (NIR) spectroscopic analysis have been performed for the measurement of lipid adsorption characteristics of chitosan. The degrees of deacetylation in chitosans were $70{\%},\;85{\%}\;and\;92{\%}$ at different deacetylation times (1 hr, 2 hrs, 3 hrs), respectively. The molecular weight of each chitosan was controlled by enzymatic hydrolysis, and then the molecular weight of the chitosan was 4 kDa. The bulk density, water holding capacity and fat binding capacity of each chitosan powder were $96.2-504.0{\%},\;374.4-1217.9{\%},\;and\;307.0-659.3{\%}$, respectively. The higher molecular weight of chitosan was exhibited the lower bulk density and the higher water and fat binding capacities. Bindinf capacities of chitosan powders to bile salts, cholesterol and linoleic acid were $41.2-63.3{\%},\;40.8-67.4{\%},\;42.6-72.6{\%}$, respectively. In NIR spectrum of lipid adsorbed chitosan the occurrence static eletronical binding between chitosan and lipid was identified by NIR spectrum peak induced from combination of carboxylic group in lipid and amino group in chitosan. In conclusion, the higher degree of deacetylation and molecular weight of chitosan showed the higher lipid binding capacity and the lipid adsorption of chitosan were occurred by combination of carboxylic group in lipids and amino group in chitosan.

Adsorption of $\textrm{Pb}_{2+}$ in the components of bacterial cell membrane

  • Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.278-282
    • /
    • 1995
  • S. epidermidis cell was fractionated into cell wall, cell membrane and cytoplasm. The cell membrane adsorbed the most abundant $\textrm{Pb}_{2+}$ per unit dry weight of the three fractions tested. Adsorption behavior of $\textrm{Pb}_{2+}$ in lipid and protein, which are the main components of the cell membrane, indicated that phosphatidylethanolamine and phosphatidylinositol having phosphoryl group and gangliosides containing carboxyl groups adsorbed much more $\textrm{Pb}_{2+}$ than triglycerides lacking any chargeable functional groups. Protein purified from cell membrane adsorbed larger amount of $\textrm{Pb}_{2+}$ than total native cell membrane or cell membrane lipid.

  • PDF

Studies on the Immobilization of Lipase by Adsorption Method (흡착법에 의한 Lipase의 고정화)

  • Park, Jong-Hack;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.75-80
    • /
    • 1985
  • To utilize lipase obtained from Candida cylindracea for lipid hydrolysis, methods to immobilize lipase by adsorption and reaction characteristics of the immobilized lipase by adsorption were investigated. Among the tested adsorbents, silica gel was selected as a suitable adsorbent. The optimum condition for adsorption of lipase was when 47.5 units of lipase were adsorbed to 1.6g of silica gel at pH7.0 and $5^{\circ}C$ for 100 min. Optimum pH and temperature for activity of the immobilized lipase were at $37^{\circ}C$ and pH7.0, which were same as the soluble lipase. Optimum enzyme concentration of the immobilized lipase were 30g for milk fat and 80g for olive oil, whereas those of the soluble lipase were 800 units for milk fat and 1200 units for olive oil. The optimum substrate concentrations of the immobilized and soluble lipases were 20% lipid, regardless of lipid types. Rapid hydrolysis of milk fat was observed with the soluble lipase for the initial 4 hours and with the immobilized lipase for the initial 8 hours. The immobilized lipase produced same amount of capric acid as the soluble lipase, but more myristic acid and less butyric acid than the soluble lipase.

  • PDF

Binding sites for lead ion in staphylococcus epidermidis

  • Kim, Mal-Nam;Sung, Hye-Yoon
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.228-233
    • /
    • 1995
  • As S. epidermidis cell was fractionated into cell wall, cell membrane, and cytoplasm, the cell membrane proved to be the most efficient absorbent for lead ion. Utrasonication was effective, when the cells were treated during their exponential growth. The amount of the lead ion adsorbed in cell membrane decreased as hydrogen ion concentration of solution increased. Protein purified from the cell membrane showed higher adsorption capacity for the lead ion than peptidoglycan, teichoic acid from cell wall, or cell membrane lipid. Modification of carboxyl groups in the membrane protein with ethylenediamine and 1-ethyl-3-carbodiimide hydrochloride resulted in a considerable decrease of lead ion adsorption capability, suggesting that the main binding site for lead ion was the carboxyl groups of protein in cell membrane.

  • PDF

Surface Properties of Liposomes Modified with Poly(ethylenimine) (폴리에틸렌이민으로 개질된 리포솜의 표면 특성)

  • 박윤정;남다은;서동환;한희동;김태우;김문석;신병철
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2004
  • Cationic liposomes for cancer treatment have been developed in the field of chemotharpy. It was well combined on the surface of anionic tumor cell membrane by electrostatic interaction. Thus, the object of this study was to prepare the cationic liposomes capable of forming an ionic complex with the anionic cell membrane. To prepare the cationic liposomes, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as a cationic lipid material and polyethylenimine (PEI) as a cationic polymer were synthesized. Ionic property on the surface of liposomes was determined by the zeta potential. The adsorption characteristics of plasma protein for liposome in bovine serum were determined by the particle size and turbidity change. To estimate the stability of liposome in buffered solution, the change of particle size was measured at room temperature for seven days. The cationic liposomes were absorbed a large amount of plasma protein in bovine serum because plasma protein having anionic charge was fixed on the surface of cationic liposomes. This result indicate that the modification on the surface of liposomes using cationic polyethylenimine enhances the protein adsorption in bovine serum. Additionaly, cationic liposomes showed good stability in buffered solution for seven days.

Surface Modification of Liposomes Using Comblike Copolymer for Enhancing Stability in Blood Circulation (혈류 내 안정성 향상을 위한 빗 모양 고분자로 개질된 리포솜)

  • Sin, Byeong-Cheol;Song, Chung-Gil;Hwang, Tae-Won;Seong, Ha-Su;Park, Eun-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • To increase the stability of liposomes in blood circulation, surface modification of liposomes by incorporating a lipid-polymer derivative in the lipid bilayer or conjugating a hydrophilic polymer to the liposomal surface has been developed. In this study, the comblike copolymer, poly(HEMA-co-HPOEM), having multiple polyethyleneoxide side chains was prepared by free radical polymerization of hydroxyethylmethacrylate (HEMA) and hydroxypolyoxyethylenemethacrylate (HPOEM) as vinyl monomers. Poly(HEMA-co-HPOEM) was conjugated to the liposomal surface and the characteristics of the modified liposomes in serum were investigated. Conjugation of poly(HEMA-co-HPOEM) to liposomes increased the particle size of the liposomes by 30 nm and decreased the absolute value of zeta potential of the liposomes by shielding the negative charge of liposomal surface. Loading efficiency of model drug, doxorubicin, in liposomes was about 90% and the efficiency was not affected by conjugation of poly(HEMA-co-HPOEM) to liposomes. The particle size of poly(HEMA-co-HPOEM)-conjugated liposomes in serum did not changed and the protein adsorption was lower than that of control liposomes or liposomes containing polyethyleneoxide-lipid derivative (PEG-liposomes). These results suggest that poly(HEMA-co-HPOEM) is efficient for the stabilization of liposomes in blood circulation.

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF

토양-휴민의 물리화학적 특성 및 PAHs의 결합 특성 연구

  • Im Dong-Min;Sin Hyeon-Sang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.16-19
    • /
    • 2006
  • Humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, do-ashed humin was isolated from a soil sample after removing free lipid and alkali-soluble humic fractions followed by dissolution of mineral matrix with 2% HF, and characterized by elemental analysis, C-13 NMR spectroscopic method. Sorption behavior of 1-naphthol with humin was also investigated from aqueous solution. C-13 NMR spectra indicate that humin molecules are mainly made up of aliphatic carbon including carbohydrate, methylene chain etc.. Sorption intensity for 1-naphthol was increased as organic carbon content of humin increased and log Koc values for the 1-naphthol sorption were determined to be ${\sim}3.12$

  • PDF

Dyeability and Enzymetic Treatment of Wool Pretreated with tert-Butoxide (tert-Butoxide 처리 양모의 효소처리 및 염색성에 관한 연구)

  • 윤남식;윤성도
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.87-95
    • /
    • 1997
  • Wool samples were treated by potassium tert-Butoxide(t-BuOK) in anhydrous tert-butanol to remove the bound surface lipid-layer, and the weight loss behaviors in protease solution and dyeabilities of the samples were studies. The C/N ratio of the surface of the t-BuOK-treated wool was shown to be 4.3 from XPS analysis. From SEM pictures any remarkable change in the shape of surface curticle during the proteasw treatment was not observed regardless of prior t-BuOK treatment. Dyeing rate and equilibrium adsorption of Orange II, a typical levelling type acid dye, on wool were not changed by protease or t-BuOK treatment, but those of Milling Cyanine 5R, a typical milling type acid dye, on wool were greatly enhanced by t-BuOK treatment in spite that, from alkali and urea-bisulfite solubilities, no damage on the inner part of wool fiber was expected by t-BuOK treatment.

  • PDF

Remediation Efficiency Evaluation of Heavy Metal Contaminated Soils by Reactive Material Covered Vertical Drains in Incheon (반응물질이 도포된 연직배수재를 활용한 인천지역의 중금속 오염토양 정화에 관한 연구)

  • Shin, Eun-Chul;Eo, Jae-Won;Kim, Ki-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.45-55
    • /
    • 2015
  • In Incheon area, 1960s of economic development planning and heavy industry center of efforts industrial park and port facilities, It is industrial land reclamation by coastal landfill, these industrial park has the characteristics of Low permeability lipid is embedded in the silty sand that was dredged. In this study, To evaluate the heavy metal adsorption ability to filter of drains that have been developed as environmentally friendly materials by applying the effective zeolite to heavy metal adsorption for soil pollution purification suitable for geological characteristics of Incheon. soil pollution Survey data and Literature search, which is the current through the industry, the most problematic was set to Cadmium (Cd) and Copper(Cu), Lead (Pb). and Using the Numerical Analysis using the Visual Modflow, was presented the most efficient drains set interval and format.