• Title/Summary/Keyword: Lipase activity

Search Result 591, Processing Time 0.029 seconds

Comparative Studies on the Effects of Total, Protopanaxadiol and ProtoBanaxatriol saponins of Ginseng 2. Their Effects on Blood Enzyme Activities in Rats (인삼 총사포닌, 디올계 및 트리올계 사포닌의 효과 2. 흰쥐의 몇가지 혈액효소활성에 미치는 영향)

  • 박창진;이동권
    • Journal of Ginseng Research
    • /
    • v.5 no.1
    • /
    • pp.49-55
    • /
    • 1981
  • The effects of total, protopanaxadiol-and protopanaxatriol-saponins on the in vitro activities of several enzymes in rat serum were observed Alkaline phosphatase activity was increased 61 % by total saponin and 46% by protopanaxatriol-saponin, compared to control group. While SCOT activity was slightly decreased by total saponin and protopanaxatriol- saponin, it was slightly increased by Protopanaxadiol-saponin And while SCPT activity was slightly decreased by total saponin, it was increased by protopanaxadiol-saponin and protopanaxatriol-saponin. Creatine phosphokinase activity had a tendency to be increased by protopanaxatriol-saponin. Lactate dehydrogenase activities were increased in three saponin treated groups, but those were nonignificant. Compared to the control group, lipase activity was increased by all saponin samples. It was increased 157% by total saponin The increase in lipase activity by total saponin corresponded with the decrease in serum t total lipid by total saponin .

  • PDF

Pancreatic lipase Inhibitory Compound from Apis mellifera venome

  • Kim, Jun-Ran;Kim, Shin-Duk
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.57-59
    • /
    • 2008
  • While searching for pancreatic lipase inhibitors, the active compound was found in a methanol extract of Apis mellifera venome. The active compound was isolated by Diaion HP-20 column chromatography, thin layer chromatography and HPLC. The active compound is stable to the extreme pH and heat. There is no loss of activity both in acidic and alkaline solution in the pH range of 2 to 11 by heating for 15 minutes at $90^{\circ}C$. The rf value of the compound was 0.51 at TLC with butanol : methanol: water (4:1:2) solvent system. The molecular weight of the compound was determined to be 293 by EI-MS.

Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 171 (Pseudomonas sp. BCNU 171이 생산하는 유기용매 내성 리파아제)

  • Choi, Hye Jung;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.345-348
    • /
    • 2015
  • An organic solvent stable lipase from solvent-tolerant Pseudomonas sp. BCNU 171 had an optimal pH of 8 and an optimal temperature of 37℃. This crude extracellular lipase from BCNU 171 exhibited increased stability in the presence of various types of solvents at high concentrations (25%, v/v). The lipase stability was found to be highest in the presence of xylene (137%), followed by toluene (131%), octane (130%), and butanol (104%). Overall, BCNU 171 lipase tended to be more stable than immobilized commercial lipase (Novozyme435) in the presence of organic solvents. Furthermore, BCNU 171 lipase maintained about 90% of its enzyme original activity in the presence of NH4+, Na+, Ba2+, Hg2+, Ni2+, Cu2+, and Ca2+ion and significantly increased its enzyme activity in the presence of various emulsifying agents. Thus, the organic solvent stable lipase from Pseudomonas sp. BCNU 171 could be usable as a potential whole cell biocatalyst and for synthetic applications of enzymes for industrial chemical processes in organic solvents without using immobilization.

Pancreatic Lipase Inhibitory and Antioxidant Activities of Zingiber officinale Extracts (생강 추출물의 pancreatic lipase 저해 및 항산화 활성)

  • Bae, Jong-Sup;Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.390-396
    • /
    • 2011
  • Ginger (Zingiber officinale) is a well-known herb that is widely consumed as spice for the flavoring of foods. As part of our continuing search for bioactive materials, the in vitro pancreatic lipase inhibition and antioxidant properties of an aqueous ethanolic extract of Z. officinale were investigated. The total phenolic content was determined using a spectrophotometric method. The antioxidant efficacies of the extract was studied with radical scavenging assays using DPPH and $ABTS^+$ radicals. Further more, the antiobesity effect of the extract was evaluated by porcine pancreatic lipase assay. In particularly, the pancreatic lipase inhibitory activity of the ethyl acetate (EtOAc)-soluble portion from Z. officinale was significantly higher than that of the other solvent-soluble portions. The results suggest that Z. officinale may have therapeutic potential that may be useful in development of an anti-obesity agent or its precursors.

Screening and Characterization of Psychrotrophic, Lipolytic Bacteria from Deep-Sea Sediments

  • Zeng, Xiang;Xiao, Xiang;Wang, Peng;Wang, Rengping
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.952-958
    • /
    • 2004
  • Of 23 psychrotrophic bacteria isolated from the west Pacific deep-sea sediments, 19 were assigned to the $\gamma$-Proteobacteria, 3 to the <$\beta$-Proteobacteria, and 1 to the Gram-positive bacteria, as determined by their 16S rDNA sequences. Ten psychrotrophs, affiliated to the Psychrobacter, Pseudoalteromonas, and Pseudomonas genera in the $\gamma$-Proteobacteria group, were screened for lipolytic bacteria. The majority of the lipolytic isolates had growth temperatures between 4-$30^\circ{C}$, and all of them were neutrophilic, aerobic, or facultatively anaerobic, and some were able to produce multiple kinds of ectohydrolytic enzymes. The deep-sea strains Psychrobacter sp. wp37 and Pseudoalteromonas sp. wp27 were chosen for further lipase production analysis. Both strains had the highest lipase production when grown at 10 to $20^\circ{C}$; their highest lipase production occurred at the late-exponential growth stage; and the majority of the enzymes were excreted to the outside of the cells. Lipases from both strains had the same optimal reaction temperature and pH (20-$30^\circ{C}$, pH 7-8) and could retain about 60% of their highest activity at $4^\circ{C}$. Furthermore, SDS-PAGE and an in-gel activity test showed that they had the same high molecular mass of about 85 kDa.

Developmental Changes in Digestive Organ and Digestive Enzyme Activity of Filefish Thamnaconus modestus (말쥐치 Thamnaconus modestus 자치어의 성장에 따른 소화기관 및 소화효소 발달)

  • Gwak, Woo-Seok;Lee, So-Gwang
    • Korean Journal of Ichthyology
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2009
  • Larvae and juveniles of the filefish Thamnaconus modestus were reared for 64 days after hatching (DAH) in order to determine the activity of four enzymes (trypsin, pepsin-like enzyme, lipase, amylase) during ontogeny. Larvae were fed on rotifer Brachionus plicatilis from 2 to 26 DAH, Artemia nauplii from 10 to 64 DAH, and then gradually changed to pelleted feed from 40 DAH. Temperature was kept between $21.5{\sim}24.2^{\circ}C$ Activity of trypsin and lipase was found in larvae 4 DAH ($6.0{\pm}1.4unit$) and 6 DAH ($4.5{\pm}1.4unit$), respectively. The evolution of activity in both enzymes showed a profile marked by drastic increases between late larval and early juvenile stages. Pepsin-like enzyme activity was found at 10 DAH and drastically increased from 28 DAH, corresponding with the early juvenile stage of T. modestus. Interestingly, developmental changes in the pepsin-like enzyme activity coincided well with increases in the number of gastric glands. Amylase activity was found at 10 DAH and was maintained at a low level up to 28 DAH, followed by a drastic increase from 28 DAH to 40 DAH. It might be concluded that a drastic increase in trypsin and pepsin-like enzyme activities, and a corresponding increase in the number of gastric glands reflects a higher somatic growth of T. modestus during the early juvenile period.

Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens

  • Yuan, J.M.;Guo, Y.M.;Yang, Y.;Wang, Z.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1222-1228
    • /
    • 2007
  • The aim of this experiment was to compare the characterization of fatty acid digestion of Beijing Fatty (BF) and Arbor Acres (AA) chickens. One-day-old male AA and BF chickens were raised in the same house, and fed with the same diet. We first evaluated utilization of dietary fatty acids in chickens by the total collection procedure, and chickens were then killed to compare the abundance of intestinal mRNA expression of liver-fatty acid binding protein (L-FABP) and intestinal-fatty acid binding protein (I-FABP) by Real-time PCR, and also the pH of intestinal mucosa at 3 and 6 weeks of age. Another group of chickens were sampled at 6 weeks of age to compare the total bile acid concentration in serum, and lipase activity in contents of the small intestine. Results showed that compared to AA chickens, BF chickens had higher lipase activity in the content of the small intestine (p<0.05), greater total bile acid content in portal vein blood (p<0.05) at 6 weeks of age, lower intestinal mucosal pH at both 3 weeks (p<0.05) and 6 weeks (p<0.05) of age, and higher abundance of liver-fatty acid binding protein (L-FABP) mRNA expression in intestine tissues at 6 weeks of age (p<0.05), and higher digestibility of fatty acids at both 3 and 6 weeks (p<0.05) of age. There was no difference in I-FABP mRNA expression between AA and BF chickens at either age. Thus, BF chickens had greater fatty acids utilization than AA chickens that was associated with L-FABP, lipase activity, bile acid content and intestinal mucosal pH.

Expression and Characterization of a New Esterase Cloned Directly from Agrobacterium tumefaciens Genome

  • PARK HYO-JUNG;KIM YOUNG-JUN;KIM HYUNG-KWOUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.145-148
    • /
    • 2006
  • A new functional lipolytic enzyme (AT4) has recently been found from Agrobacterium tumefaciens C58 Cereon using a genome-wide approach. The enzyme has some sequence similarity to E. coli acetyl hydrolase, Emericella nidulans lipase, Moraxella sp. lipase, Acinetobacter lwoffii esterase, and Streptomyces hygroscopicus acetyl hydrolase. However, the sequence similarities are very low (less than $25\%$), suggesting that it is a new lipase/esterase enzyme. ill the present study, intact cell of the A. tumefaciens strain was shown to have lipolytic activity on a tributyrin-LB plate. The AT4 gene was then expressed at a high level in E. coli BL21 (DE3) cells and the enzyme was purified simply by Ni-NTA column chromatography. The purified enzyme showed hydrolytic activity toward p-nitrophenyl caproate, but not toward olive oil, suggesting that the AT4 enzyme was a typical esterase rather than lipase. AT4 esterase had a maximum hydrolytic activity at $45^{\circ}C$ and pH 8.0, when p-nitrophenyl caproate was used as a substrate. It was relatively stable up to $40^{\circ}C$ and at pH 5.0-9.0. Calcium ion and EDT A did not affect the activity and thermal stability of the enzyme. As for substrate specificity, AT4 enzyme could rapidly hydrolyze acetyl and butyl groups from p-nitrophenyl esters and 1-naphthyl esters. In addition, it also released acetyl residues from acetylated glucose and xylose substrates. Therefore, this new esterase enzyme might be used as a biocatalyst in acetylation and deacetylation reactions performed in the fine chemical industry.

Antioxidant Properties and Diet-Related α-Glucosidase and Lipase Inhibitory Activities of Yogurt Supplemented with Safflower (Carthamus tinctorius L.) Petal Extract

  • Hong, Heeok;Lim, Jeong Min;Kothari, Damini;Kwon, So Hee;Kwon, Hyuk Cheol;Han, Sung-Gu;Kim, Soo-Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.122-134
    • /
    • 2021
  • Recently, yogurt has been extensively studied to further enhance its functions using edible plant extracts. This study was conducted to investigate whether safflower petal (SP) as a natural food additive can be used to develop functional yogurt with improved health benefits. SPs were extracted with ethanol (SPE) and hot water (SPW), and then safflower yogurt was prepared by adding 0%-1.0% of those extracts to plain yogurt. With an increase in the fermentation duration, the pH of SPE and SPW yogurt samples was decreased, whereas titratable acidity and microbial counts were increased. The concentration of total polyphenols and total flavonoids, the activity of antioxidants, and the inhibitory effect on reactive oxygen species (ROS) were higher in SPW yogurt than SPE yogurt. Furthermore, α-glucosidase and lipase activity inhibitory effects of SPW yogurt were higher than those of SPE yogurt. In particular, free radical-scavenging activities, ROS inhibitory effect, and α-glucosidase activity inhibitory effects were significantly increased in SPW yogurt in a dose-dependent manner. Overall, these results suggest that SP extract possesses antioxidant activities and that it can downregulate α-glucosidase and lipase activities. The SP extract may have potential benefits as a natural food additive for the development of functional yogurt.

Inhibition of Lipase Activity and Preadipocyte Differentiation in 3T3-L1 Cells Treated with Sargassum horneri Extract (괭생이모자반 추출물의 리파아제 저해 활성 및 3T3-L1 지방전구세포 분화억제 효과)

  • Hong, Ji Woo;Park, Ha Young;Park, Jae Hyun;Kim, So Hee;Kim, Han A;Kim, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • In this study, in order to evaluate the anti-obesity effect of sargassum horneri extract, the effects of the extract on lipase activity and preadipocyte differentiation in 3T3-L1 cells were investigated. S. horneri extract between 0.0 and 1.0 mg/mL showed no cytotoxicity and inhibited lipase activity by 68.1%. When S. horneri extract was utilized at levels of 0.25, 0.5, and 1.0 mg/mL in 3T3-L1 cells, preadipocytes differentiation decreased by 11.4, 19.7, and 25.6%, respectively, showing anti-obesity effects. In addition, after treatment with 1.0 mg/mL S. horneri extract, the mRNA expression levels of sterol regulatory element binding proteins-1c (SREBP-1c), peroxisome proliferator activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (CEBP-α), fatty acid synthase (FAS), and stearoyl-CoA desaturase1 (SCD1) in 3T3-L1 cells were significantly decreased (p < 0.05) by 65.2, 54.9, 50.0, 33.8, and 33.8% respectively. These results showed that S. horneri extract suppresses lipase activity and prophylactic preadipocyte differentiation in 3T3-L1, and thus can be used as an anti-obesity agent in functional foods and medicines.