Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1222

Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens  

Yuan, J.M. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University)
Guo, Y.M. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University)
Yang, Y. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University)
Wang, Z.H. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.8, 2007 , pp. 1222-1228 More about this Journal
Abstract
The aim of this experiment was to compare the characterization of fatty acid digestion of Beijing Fatty (BF) and Arbor Acres (AA) chickens. One-day-old male AA and BF chickens were raised in the same house, and fed with the same diet. We first evaluated utilization of dietary fatty acids in chickens by the total collection procedure, and chickens were then killed to compare the abundance of intestinal mRNA expression of liver-fatty acid binding protein (L-FABP) and intestinal-fatty acid binding protein (I-FABP) by Real-time PCR, and also the pH of intestinal mucosa at 3 and 6 weeks of age. Another group of chickens were sampled at 6 weeks of age to compare the total bile acid concentration in serum, and lipase activity in contents of the small intestine. Results showed that compared to AA chickens, BF chickens had higher lipase activity in the content of the small intestine (p<0.05), greater total bile acid content in portal vein blood (p<0.05) at 6 weeks of age, lower intestinal mucosal pH at both 3 weeks (p<0.05) and 6 weeks (p<0.05) of age, and higher abundance of liver-fatty acid binding protein (L-FABP) mRNA expression in intestine tissues at 6 weeks of age (p<0.05), and higher digestibility of fatty acids at both 3 and 6 weeks (p<0.05) of age. There was no difference in I-FABP mRNA expression between AA and BF chickens at either age. Thus, BF chickens had greater fatty acids utilization than AA chickens that was associated with L-FABP, lipase activity, bile acid content and intestinal mucosal pH.
Keywords
Fatty Acids Digestion; Lipase Activity; Intestinal Mucosal pH; Intestinal FABP Expression; Chicken;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Nitsan, Z., E. A. Dunnington and P. B. Siegel. 1991. Organ growth and digestive enzyme levels to fifteen days of age in strains of chickens differing in body weight. Poult. Sci. 70:2040-2048.   DOI   ScienceOn
2 Vassileva, G., L. Huwyler, K. Poirier, L. B. Agellon and M. J. Toth. 2000. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. Faseb. J. 14:2040-2046.   DOI   ScienceOn
3 Woudstra, T. D., L. A. Drozdowski, G. E. Wild, M. T. Clandinin, L. B. Agellon and B. R. Thomson. 2004. The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein. Lipids. 39:603-610.   DOI   ScienceOn
4 Shiau, Y. F. 1981. Mechanism of fat absorption. Am. J. Physiol. 240G:1-9.
5 Shih, B. L., B. Yu and J. C. Hsu. 2005. The development of gastrointestinal tract and pancreatic enzymes in white Roman geese. Asian-Aust J. Anim. Sci. 18:841-847.   DOI
6 Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366-373.   DOI   ScienceOn
7 O'Sullivan, N. P., E. A. Dunnington and P. B. Siegel. 1992. Correlated responses in lines of chickens divergently selected for 56-day body weight. 3. Digestive enzymes. Poult. Sci. 71:610-617.   DOI   ScienceOn
8 Hurwitz, S., A. Bar, M. Katz, D. Sklan and P. Budowski. 1973. Absorption and secretion of fatty acids and bile in the intestine of the laying fowl. J. Nutr. 103:543-547.   DOI
9 Katongole, J. B. and B. E. March. 1979. Fatty acid-binding protein in the intestine of the chicken. Poult. Sci. 58:372-375.   DOI   ScienceOn
10 Katongole, J. B. and B. E. March. 1980. Fat utilization in relation to intestinal fatty acid binging protein and bile salts in chicks of different ages and different genetic sources. Poult. Sci. 59:819-827.   DOI   ScienceOn
11 Tso, P., M. Lindstorm and B. Borgstrom. 1987. Factors regulating the formation of chylomicrons and very-low density lipoproteins by the rat small intestine. Biochem. Biophys. Acta. 922:304-313.   DOI   ScienceOn
12 Shiau, Y. F. 1990. Mechanism of intestinal fatty acid uptake in the rat: the role of an acidic microlimate. J. Physiol. 421:463-474.   DOI
13 Krogdahl, A. and J. Sell. 1989. Influence of age on lipase amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult. Sci. 68:1561-1568.   DOI   ScienceOn
14 Palo, P. E., J. L. Sell, F. J. Piquer, L. Vilaseca and M. F. Soto- Salanova. 1995. Effect of early nutrient restriction on brioler chickens. 2. Performance and digestive enzyme activities. Poult. Sci. 74:1470-1483.   DOI   ScienceOn
15 Pinchasov, Y., I. Nir and Z. Nitsan. 1990. Metabolic and anatomical adaptations of heavy-bodied chicks to intermittent feeding. 2. Pancreastic digestive enzymes. Br. Poult. Sci. 31:769-777.   DOI   ScienceOn
16 Poirier, H., I. Niot, P. Degrace, M. C. Monnot, A. Bernard and P. Besnard. 1997. Fatty acid regulation of fatty acid-binding proteins expression in the small intestine. Am. J. Physiol. 273:G289-295.   DOI
17 Polin, D., T. L.Wing, P. Ki and K. E. Pell. 1980. The effect of bile acids and lipase on absorption of tallow in young chicks. Poult. Sci. 59:2738-2743.   DOI   ScienceOn
18 Richieri, G. V., R. T. Ogata and A. M. Kleinfeld. 1999. Fatty acid interactions with native and mutant fatty acid binding protein. Mol. Cell Biochem. 192:77-85.   DOI   ScienceOn
19 Ockner, R. K., J. A. Manning, R. B. Poppenhausen and K. L. William. 1972. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Sci. 177:56-58.   DOI   ScienceOn
20 Yuan, J. M., Y. M. Guo, ZH. Wang, Y. Yang and W. Nie. 2006. Comparative study of development of digestive organ and essential fatty acids content in breast muscle between Beijing Fatty chicks and AA broiler chicks (abstract), XII AAAP congress proceeding-abstract, Busan, Korea.
21 Besnard, P., I. Niot, P. Poirier, C. Lionel and A. Bernard. 2002. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol. Cell. Biochem. 239:139-147.   DOI   ScienceOn
22 Sukhija, P. S. and D. L. Almquist. 1988. Rapid method for determination of total fatty acid content and composition of the feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206.   DOI
23 Chen, G. H., S. S. Hou, X. S. Wu, K. H. Wang, K. W. Chen and J. H. Li. 2000. Comparison between inosinic acid content of muscle in Chinese native chickens. Acta Vet. Zoot. Sinica, 31:211-215.
24 Chow, S. L. and D. Hollander. 1979. Linoleic acid absorption in the unanesthetized rat: mechanism of transport and influence of luminal factors on absorption rate. Lipids, 14:378-385.   DOI   ScienceOn
25 Chen, G. H., X. S. Wu, S. S. Hou, K. H. Wang and K. W. Chen. 1999. Study on the fatty acids contents in muscle of Chinese native chicken breeds. Chinese J. Anim. Sci. 35:27-28.
26 Armand, M., P. Borel, B. Pasquier, C. Senft, M. Dubois, M. Andre, J. Peyrot, J. Salducci and Lairon. 1996. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172-183.   DOI
27 Bass, N. M., J. A. Manning, R. K. Ockner, J. L.Gordon, S. Seetharam and D. H. Alpers. 1985. Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine: Influences of sex difference and of clofibrate. J. Biolog. Chem. 260:1432-1436.
28 Bauer, E., S. Jakob and R. Mosenthin. 2005. Principles of physiology of lipid digestion. Asian-Aust. J. Anim. Sci. 18:282-295.   DOI
29 Mossab, A., J. M. Hallouis and M. Lessire. 2000. Utilization of soybean oil and tallow in young turkeys compared with young chickens. Poult. Sci. 79:1326-1331.   DOI
30 Nir, I., Z. Nitsan and M. Mahagna. 1993. Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 34:523-532.   DOI   ScienceOn
31 Krogdahl, A. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115:675-685.   DOI
32 Ganderemer, G. 2002. Lipids in muscles and adipose tissues, change during processing and sensory properties of meat products. Meat Sci. 62:309-321.   DOI   ScienceOn
33 Dunnington, E. A. and P. B. Siegel. 1995. Enzyme actively and organ development in newly hatched chicks selected for high or low eight-week body weight. Poult. Sci. 74:761-770.   DOI   ScienceOn