• Title/Summary/Keyword: Liouville's Theorem

Search Result 9, Processing Time 0.025 seconds

A GENERALIZATION OF LIOUVILLE′S THEOREM ON INTEGRATION IN FINITE TERMS

  • Utsanee, Leerawat;Vichian, Laohakosol
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.13-30
    • /
    • 2002
  • A generalization of Liouville's theorem on integration in finite terms, by enlarging the class of fields to an extension called Ei-Gamma extension is established. This extension includes the $\varepsilon$L-elementary extension of Singer, Saunders and Caviness and contains the Gamma function.

PLANCHEREL AND PALEY-WIENER THEOREMS FOR AN INDEX INTEGRAL TRANSFORM

  • Kim, Vu--Tuan;Ali Ismail;Megumi Saigo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.545-563
    • /
    • 2000
  • An integral transform with the Bessel function Jv(z) in the kernel is considered. The transform is relatd to a singular Sturm-Liouville problem on a half line. This relation yields a Plancherel's theorem for the transform. A Paley-Wiener-type theorem for the transform is also derived.

  • PDF

MULTIPLE SYMMETRIC POSITIVE SOLUTIONS OF A NEW KIND STURM-LIOUVILLE-LIKE BOUNDARY VALUE PROBLEM WITH ONE DIMENSIONAL p-LAPLACIAN

  • Zhao, Junfang;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1109-1118
    • /
    • 2009
  • In this paper, we are concerned with the following four point boundary value problem with one-dimensional p-Laplacian, $\{({\phi}_p(x'(t)))'+h(t)f(t,x(t),|x'(t)|)=0$, 0< t<1, $x'(0)-{\delta}x(\xi)=0,\;x'(1)+{\delta}x(\eta)=0$, where $\phi_p$ (s) = |s|$^{p-2}$, p > $\delta$ > 0, 1 > $\eta$ > $\xi$ > 0, ${\xi}+{\eta}$ = 1. By using a fixed point theorem in a cone, we obtain the existence of at least three symmetric positive solutions. The interesting point is that the boundary condition is a new Sturm-Liouville-like boundary condition, which has rarely been treated up to now.

  • PDF

History of Transcendental numbers and Open Problems (초월수의 역사와 미해결 문제)

  • Park, Choon-Sung;Ahn, Soo-Yeop
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.57-73
    • /
    • 2010
  • Transcendental numbers are important in the history of mathematics because their study provided that circle squaring, one of the geometric problems of antiquity that had baffled mathematicians for more than 2000 years was insoluble. Liouville established in 1844 that transcendental numbers exist. In 1874, Cantor published his first proof of the existence of transcendentals in article [10]. Louville's theorem basically can be used to prove the existence of Transcendental number as well as produce a class of transcendental numbers. The number e was proved to be transcendental by Hermite in 1873, and $\pi$ by Lindemann in 1882. In 1934, Gelfond published a complete solution to the entire seventh problem of Hilbert. Within six weeks, Schneider found another independent solution. In 1966, A. Baker established the generalization of the Gelfond-Schneider theorem. He proved that any non-vanishing linear combination of logarithms of algebraic numbers with algebraic coefficients is transcendental. This study aims to examine the concept and development of transcendental numbers and to present students with its open problems promoting a research on it any further.

Free Energy Estimation in Dissipative Particle Dynamics

  • Bang, Subin;Noh, Chanwoo;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.37-54
    • /
    • 2016
  • The methods for estimating the change of free energy in dissipative particle dynamics (DPD) are discussed on the basis of fluctuation theorems. Fluctuation theorems are tactics to evaluate free energy changes from non-equilibrium work distributions and have several forms, as proposed by Jarzynski, Crooks, and Bennett. The validity of these methods however, has been shown merely with the molecular dynamics or Langevin dynamics. In this study, the appropriate forms of fluctuation theorems for dissipative particle dynamics, which has similar structure to that of Langevin dynamics, are suggested using Liouville's theorem, and they are proved equivalent to original fluctuation theorems. Work distribution functions, which are probability distribution functions of works exerted on the system within the systematic change, are the basics of fluctuation theorems and their shapes are turned out to be dependent on the phase space trajectory of the change of the system. The reliability of Jarzynski and Crooks methods is highly dependent on the number of simulations to measure works and the shapes of the work distribution functions. Bennett method, however, can evaluate free energy changes even when Jarzynski and Crooks methods fail to do so.

  • PDF

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan;Soliman A. Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.601-612
    • /
    • 2023
  • The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

ROUGH ISOMETRY, HARMONIC FUNCTIONS AND HARMONIC MAPS ON A COMPLETE RIEMANNIAN MANIFOLD

  • Kim, Seok-Woo;Lee, Yong-Han
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.73-95
    • /
    • 1999
  • We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.

  • PDF

FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1101-1121
    • /
    • 2008
  • One proposes an approach to fractional Fourier's transform, or Fourier's transform of fractional order, which applies to functions which are fractional differentiable but are not necessarily differentiable, in such a manner that they cannot be analyzed by using the so-called Caputo-Djrbashian fractional derivative. Firstly, as a preliminary, one defines fractional sine and cosine functions, therefore one obtains Fourier's series of fractional order. Then one defines the fractional Fourier's transform. The main properties of this fractal transformation are exhibited, the Parseval equation is obtained as well as the fractional Fourier inversion theorem. The prospect of application for this new tool is the spectral density analysis of signals, in signal processing, and the analysis of some partial differential equations of fractional order.

  • PDF