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FOURIER’S TRANSFORM OF FRACTIONAL ORDER VIA
MITTAG-LEFFLER FUNCTION AND MODIFIED
RIEMANN-LIOUVILLE DERIVATIVE
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ABSTRACT. One proposes an approach to fractional Fourier’s transform,
ot Fourier’s transform of fractional order, which applies to functions which
are fractional differentiable but are not necessarily differentiable, in such
a manner that they cannot be analyzed by using the so-called Caputo-
Djrbashian fractional derivative. Firstly, as a preliminary, one defines frac-
tional sine and cosine functions, therefore one obtains Fourier’s series of
fractional order. Then one defines the fractional Fourier’s transform. The
main properties of this fractal transformation are exhibited, the Parse-
val equation is obtained as well as the fractional Fourier inversion theorem.
The prospect of application for this new tool is the spectral density analysis
of signals, in sighal processing, and the nanalysis of some partial differential
equations of fractional order.
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1. Introduction

The Fourier’s transform f(w), w € R, of a R — C function f(z) of the
variable z € R is given by the integral (the symbol := means that the left-side
is defined by the right-side)

Flw) = /R &% f(z)da (L1)

when it convergeswhen. It is very useful in applied mathematics, for instance
for solving some differential equations and partial differential equations; but
above all in physics and engineering where it has a practical meaning in terms

-~

of frequency distributions of signals. For instance f(w) is directly related with
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the spectral densities of stochastic processes, therefore its usefulness in signal
processing.

The function f(z) so involved is usually continuous and continuously differen-
tiable (almost anywhere), and the question is what happens when it is continuous
but with fractional derivative of order e, 0 < & < 1, only? Two instances can
occur. In the first one, f(z) has both a continuous derivative and a fractional
derivative, in which case the expression (1.1) is quite meaningful. In the second
case, f(z) has a derivative of order o,0<a < 1, but no derivative, and then
(1.1) fails to apply; and as result we have to find out an alternative.

The purpose of the present contribution is exactly to provide a possible ap-
proach to this alternative, which is based on fractional calculus, and more espe-
cially on the modified Riemann-Liouvillle fractional derivative as we suggested
it recently together with the fractional Taylor’s series which results as a con-
sequence. The key is to replace the exponential function by the Mittag-Leffler
function on the one hand, and the integral with respect to dz by a fractional
integral with respect to (dz)®, on the other hand.

The article is organized as follows. For the convenience of the reader, we
shall give a brief background on the definition of fractional derivative as we use
it (Section 2) and on fractional Taylor’s series (Section 3). In Section 4, we shall
give some results related to integral with respect to . In Section 5, we shall define
fractional sine and cosine functions as a direct consequence of the Mittag-Leffler
function applied to complex variables, and then, in the section 6, we shall arrive,
in quite a natural way, to fractional Fourier’s series. Lastly, in the sections 7 and
8, we shall successively define the fractional Fourier’s transform and its inversion
formula.

2. Background on Fractional Derivative (Revisited)
2.1. Fractional derivative via fractional difference.

Definition 2.1. Let f : R — R,z — f(z), denote a continuous (but not
necessarily differentiable) function, and let h denote a constant discretization
span. Define the forward operator FW (k) by the equality (the symbol := means
that the left side is defined by the right side)

FW(h)f(z) := f(z +h) , (2.1)
then the fractional difference of order o, 0 < o < 1, of f(z) is defined by the
expression [11, 14-19]

A%f(z) = (fW - 1) f(z) ,

= c
22f) = Y- (-0 () 1@+ (a= Ry, 2.2
k=0
and its fractional derivative of order « is defined by the limit

f(a) (IE) — }]'Lii% Aah-i(x) . (23)
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In the following we shall propose an alternative which relates this definition
with the modeling via the Riemann-Liouville integral.

2.2. Modified fractional Riemann-Liouville derivative (via integral).
An alternative to the Riemann-Liouville definition of fractional derivative

In order to circumvent some drawbacks involved in the classical Riemann-
Liouville definition, we have proposed the following alternative referred to as
modified Riemann-Liouville derivative {16].

Definition 2.2 (Riemann-Liouville definition revisited). Refer to the function
f(z) of Proposition 2.1.
(i) Assume that f(z) is a constant K . Then its fractional derivative of order
o is
k _
DgK = m—j‘x a, « S 0, (2.4)
=0, a>0. (2.5)

(ii) When f(z) is not a constant, then one will set
f(x) = £(0) + (f(z) — £(0)),
and its fractional derivative will be defined by the expression
(@) = DZ£(0) + D (f(z) - £(0)),
in which, for negative a, one has

D) (f(a) ~ J0) = ey /0 Ce-0T T f(O)de, a <0, (26)

whilst for positive, one will set
Dg (f(z) - f(0)) = Dz f(x),
D, (f("'l)(z)) 0<a<l,

— F(flf&S% /0 -0 ((6) - £(0)) de. (@7)

When n < a < n+1, one will set
(n)
@) (z) = (f("‘"")(:c)) ,0<a<l (2.8)

We shall refer to this fractional derivative as to the modified Riemann Liou-
ville derivative, and it is of order to point out that it is strictly equivalent to the
definition 2.1, via the equation (2.2).

With this definition, the Laplace transform L {}of the fractional derivative is

L{f*(@)} = L {f(@)} - *7'(0),0 <a < 1. (2.9)
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2.3. Sequences of fractional derivatives. On the order of cascaded deriva-
tives. Assume that we want to calculate D**9 f(z), 0 < o, 8 < 1, by apply-
ing D*and D?n any order. At first glance, one could use either D*DYf(x) or
DP D> f(z), but the results so obtained are sensibly different, since then in terms
of Laplace’s transform (see Equ. (2.9)) one has

L{D°D°f(z)} = s*TF(s) — s**01 £(0) — 571 £()(0), (2.10)
and

L{D*Df(z)} = s*TF(s) — s**01£(0) - s2~1F)(0). (2.11)
The same problem occurs when 6, for instance, is a positive integer 1, and here
again one has DD f(z) # D*DP f(z). For instance, when f(z) = 2% n =3
and a = 0.5; one obtains

D0'5D3(.’L‘2) — O,
and
D*D%%(2?) = KD*(z"®) = ~1.5(0.5)° Kz "%,

with K denoting a constant.

Once more, we are facing the same problem when we try to define D* f(z)
with n < a < n + 1, in which case we have to set either D% := D"D*"" or
D% := Dx—np",

As a result, we have to choose a model, and we suggest the following.
Definition 2.3 (Principle of increasing order for derivatives). The fractional
derivative of fractional order D> expressed in terms of D®and D? is defined
by the equality

Do f(g) = prsx(ad) ( prin(e.6) f(g;)) _ (2.12)

On doing so, we merely follows the practical rule in accordance of which we
increase the derivation order rather than the opposite. Or again, we start from
low order derivative to define large order derivative.

On the decomposition of fractional derivatives

Let o be positive, and assume that 0 < 3a < 1. There are two different
manners to obtain D3®f(z). Either one can calculate D*D®D*f(z) to obtain
the Laplace’s transform

L{DP DD f()} = *F(s) = %71 (0) = %271 f)(0) — 271 [ (0),
or else directly calculate D3®f(z) to obtain
L{D*f(z)} = s**F(s) — s** ' £(0),
in such a manner that one will have
D*DD® f(z) # D**f(z),0 < 3a < 1.
For instance f(z) = 22 yields
D*D*D*(z3*) =0,
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and
I'l+a) _q,

D) = £ = 20)”

This pitfall can be easily circumvented if we carefully define the framework.
When the problem which we are dealing with involves D* as the basic derivative,
then we shall necessarily refer to D*D®D*. Otherwise, if the smaller derivative
so involved in the problem is D3*, then we shall use the modified Riemann-
Liouville expression for the later.

For further reading on fractional calculus, regarding history and complements,
see for instance (3, 4, 20, 23, 25, 26, 29-31, 34-36].

3. Background on Taylor’s Series of Fractional Order

3.1. Main definition. A generalized Taylor expansion of fractional order which
applies to non-differentiable functions (F-Taylor series in the following) reads as
follows [11, 14-19].

Proposition 3.1. Assume that the continuous function has fractional derivative
of order ko, for any positive integer k and a given a, 0 < a < 1, then the
following equality holds, which is

flz+h) Zr1+ kf(‘”“)() 0<a<l (3.1)

where f(®F) is the derivative of order ok of f(z)).

With the notation
I'(1+ak) =: (ak)!,
one has the formula

o h(ak) (ak)
— 4
flz+h) = kzzo —-——(ak)!f (z),0 < a < 1, (3.2)
which looks like the classical one.
Alternatively, in a more compact form, one can write

flz+h) = Ea(h*D*) f(z),

where D is the derivative operator with respect to £ and E,(y) denotes the
Mittag-Leffler function defined as

Ea(y) ~~Zr 1+ak)

Corollary 3.1 Assume that m < a <m+1, m € N — {0} and that f(z) has
derivatives of order k (integer), 1 < k < m. Assume further that f™(z) has a
fractional Taylor’s series of order oo —m := 3 provided by the expression

hk(a —m) o) o
F™ (@ +h) = ZFl-i-ka m))D'“( Vf™(z), m<a<m+1. (3.3)
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Then, integmting this series with respect to h yields

flz+h)= Z Bt (k) )+ i hiks+T) f(kﬁ+m) (z), Bi=a—m
k' LkB+m+1) T '

(3.4)
In the special case when m = 1, one has

flz+h)= f(z)+hf'(z) FEAD(g), Bi=a—1. (3.5)

* kzzl NCES)
The order of the derivation in f(*8+™) is of paramount importance and should
be understood as D# f(™)(z), since we start with the fractional Taylor’s series
of fm(z).
Mec-Laurin series of fractional order
Let us make the substitution z — h and 0 — z into (3.1), we so obtain the
fractional Mc-Laurin series

® xak
flz) = kz:% ) FeR0), 0<a<l. (3.6)

3.2. Fractional Taylor’s series for multivariable functions. Let us point
out that the fractional Taylor’s series so obtained can be generalized in a straight-
forward way to multivariable functions to yield, for instance, for two variables,

f@+h,y+1) = Eo (h*D3)Eq (1°DF) f(z,y), 0<a<l, (3.7)
therefore the differential
df(@,) = T (1 + ) (£ (@,)(d2)" + {2, )(dy)") , 0<a <l (3.8)

For larger values of , one will have, for instance
df(z,y) = fadz + fydy + T (1 + o) (£ (do)® + £{(dy)*)

21+ )5, 1<a<2. (3.9)
3.3. Some useful relations. The equation (3.1) provides the useful relation
d°f ~T(1+a)df, 0<a<]l. (3.10)

or in a difference form, A%f ~ (1 4+ a)Af.
Corollary 3.2 The following equalities hold, which are

DoxY =T(y+ I (y+1-a)z"™ % ~>0, (3.11)
or, what amounts to the same (we set a =n+6)

DY =T(y4+ I Y y+1-n—-0)27"% 0<6<1,

@)@ = u®(z)v(z) + u@z)v (), (3.12)
(Flua@)® = LWyop) (3.13)
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du)®
= fla)(y) (Zl—i) : (3.14)
u(z) is non-differentiable in (8.12) and (3.13) and differentiable in (3.14), v(z)
is non-differentiable, and f(u) is differentiable in (8.13) and non-differentiable
in (3.14).
Corollary 3.3. Assume that f(z) and z(t) are two R — R functions which
both have derivatives of order o, 0 < a < 1, then one has the chain rule
@ (@) = D@ -z 2 (2)a® ). (3.15)

Proof. The a-th derivative of x provides the equality
1
(1-a)!
which allows us to write successively
d*f = fi*)(dz)°,
df = £ )1 - a)lz®"1d%,
whereby the result. |

dz = z'=%(dr)?, (3.16)

3.4. Further results and remarks. On the suitable fractional derivative
definition to be selected

(i) With the modified Riemann-Liouville derivative, the solution of the equa-
tion (and this is why we introduced this modified Riemann-Liouville fractional
derivative!)

Dfz(t) = —Az(t), z(0) =z, (3.17)

is exactly the Mittag-Leffler function, and this can be obtained easily on looking
for a solution in the form

z(t) = i zr (t9)F. (3.18)
k=0

An alternative is to take the Laplace transform of the equation (3.17) to obtain,
with our modified Riemann-Liouville derivative, the equation

52X (s) — s*71z(0) = — AX(s),

where X (s), which is the Laplace transform of z(t), yields the Mittag-Leffler
function.

On the differentiability of f(z)

(ii) As it is obvious, the series (3.1) applies to nondifferentiable functions,
whilst (3.5) refers to differentiable functions.

(iii) Assume that @ = 1/N , N integer, in the F-Taylor series (3.1); then
when k = N, we come across the first derivative. Nevertheless this does not
mean that there is some inconsistency somewhere, but rather it is the meaning
of these equations which must be clarified. Indeed, because of the presence of A%,
h is restricted to be positive,h > 0 ; and as a result, all the derivatives involved
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in the F-Taylor series (3.1), either they are fractional or not, are derivatives on
the right..

Modeling the irreversibility of time

Assume that f(.) is a function of time f(t); then according to the above
comments, the fractional Taylor series of f(t + At) holds for positive At only.
This property can be thought of as a practical describing of the irreversibility of
time.
Relation with previous results in the literature

(iv) Osler [33] has previously proposed a generalization of Taylor’s series in
the complex plane, in the form

k=400 (ak) 2
&) =a ). 1{(1—}-((1(1]9))(

z—2), (3.19)

which provides the fractional Mc Laurin’s series

k=00
f (ak) (0) ak
k=—00
In order to enlighten the discrepancy between this series and our’s, we pro-
ceed as follows. On taking the expression (3.20) in terms of modified Riemann-
Liouville derivative on the one hand, and identifying f(z) with E,(z*) on the
other hand, we would obtain the equality
—alc

(a) _aE +C¥Zm“k—)

therefore
x0
o

1-o& (1 - ak)

E,(z%) =

in such a manner we would have E,(0) = oc.
(vi) More recently Kolwankar and Gangal [21,22] proved the so-called “local
fractional Taylor expansion” (or Rolle’s formula)

h I F® IOE) pa g 1, (3.21
= s <a< , (3.
fleth) = D 0@+ Fry g+ Relh), m<a<mel, (321)
where R, (h) is a reminder, which is negligible when compared with the other
terms. This is exactly our series (3.4), but here we give an explicit expression
for Ry(h), namely

00 pkB+m)

(kB+m) =y —
Ry(h) = ZI‘ CETES) (), B:=a—m. (3.22)

Nevertheless, it is relevant to point out that this author does not use the
Riemann-Liouville expression of fractional derivative as we did it, but rather
define the later as the limit of a quotient involving the increment of the function



Fourier’s transform of fractional order 1109

on the one hand, and a so-called coarse grained mass or a-mass of a subset which
is generally fractal. Loosely speaking the function is fractal because it is defined
on a set which itself is fractal.

4. Integration with respect to (dz)*

The integral with respect to (dz)? is defined as the solution of the fractional
differential equation

dy = f(z)(dz)*, =20, y(0) =0, (4.1)
which is provided by the following result:

Lemma 4.1. Let f(z) denote a continuous function, then the solution y(z),
y(0) = 0, of the equation (4.1) is defined by the equality

= [0 = o[-0, 0<a<t @
0 0

Proof. On multiplying both sides of (4.1) by !, and on taking account of (3.10),
we have the equality

y*(z) = alf(z),

which provides

o) = D) = o [ - o= e (@3
u
As a result, the integration of (4.1) can be written also in the form
Def@) = o [ fO@ (44
or in a like manner
~ e [ f©a° (45)

As a direct consequence of (4.2), one has the equality

[ o = 22 / “w-PHOW, 0<atf<l (40

0‘“3 —%f(6)(dE)P, O<atB<l.

The fractional integration by part formula

b b
/ u®(@)o()(dz)* = o [u(@)v(@)]; - / u(@)v'® (@)(dz)®.  (4.7)

a

can be obtained easily by combining (4.1) with (4.3).
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Change of variable. Consider the variable transformation y = g(z). If g(z) is
differentiable, then one has

/f (dy)* /f ) (dz)*, 0< a < 1,
and when g(z) has a fractional derivative of order 3, 0 < o, 8 < 1, one has
[ = a+m) [ 160 (1P@) @) 0<as<t

Some examples.
(i) On making f(z) = z” in (4.1) one obtains

‘ o _ Dla+DI(vy+1) ,
/05“’((15) - hap e, 0<ast, (4.8)

and, more especially one has

/z(dg)“ =2% 0<a<l (4.9)
0

(ii) Assume now that f(z) is the Dirac delta generalized function 6(z), then
one has

/m 5(6)(de)* = az*l, 0<a<l. (4.10)
]

Application to the fractional derivative of the Dirac delta function

On using the equation (3.12) on the one hand, and extending well known
definition on the other hand, we shall define the fractional derivative of the
Dirac delta function by the equality

[s@sene - - / BEFDEE)Y, 0<a<l,  (411)

and the equation (3.12), direct will yields
/5(“)(§)f(£)(d€)°‘ = — az®lf@(0), 0<a<l. (4.12)

5. Sine and Cosine functions of fractional order
5.1. Complex-valued Mittag-Leffler function.
Lemma 5.1. The following equality holds, which is
Ey (M) E, M®) = Eo(Mz+1y)%), AeC. (5.1)
Proof. Let us look for a function f(z) which complies with the condition

FOz) f(®) = f(A(z+y)®), rAeC
On o-th differentiating w.r.t. z and y respectively, and on taking account of
(3.13) and (3.14), one obtains the equality

f@ @) f*) = F@)F90), reC,

therefore the equation



Fourier’s transform of fractional order 1111

@) = Af(z®),
of which the solution is F,(z)subject to the condition that the derivative is taken
in the sense of the modified Riemann-Liouville derivative. [
As a result of (5.1), one has

Eo (iz®) Bo (itf®) = Ea(i(z+1)%), AeC. (5.2)

Therefore we conclude that the function is periodic with the period M, defined
as the solution of the equation

Ey (i (My)%) = 1. (5.3)
5.2. Fractalization of sin x and cos x.

Definition 5.2. Analogously with the trigonometric function, we can define the
sine and cosine functions of fractional order by the relation

E, (iz®) = cosqx® +ising 2%, (5.4)
with
) . 22k
C08q 2% i= ;(—1) )’ (5.5)
and s ) (2k-+1)
a
sing z% = ;(—1 kz—;%m. (5.6)
These functions have the period M, defined by (5.3)and are such that
sing(—z)* = (-1)%sing 2%,
€08e(—Z)* = 08427,
D%cosy 2% = —sing %,
D%sing 2% = oS, 2%,
In addition (5.1) provides the equalities
080 (Z +Y)* = €08e 2% €08y Y* — sing % sing y©, (5.7)
sing (z + y)* = sing z% cos, y* + cos, 2% sing y°, (5.8)
which yield
c08q % €08q ¥* = (1/2) (cosqe(z + y)* + cosa(z — y)*), (5.9)
sing z%sing y* = (1/2) (cose(z — y)* — cosq(z +4)%), (5.10)
sing 2% cosa y* = (1/2) (sing(z + y)* +sing(z — 3)%). (5.11)

The following orthogonality conditions hold

My [+
/ cosg(mz)® cosq(nz)®(dz)® = (M;) Omns (5.12)
0
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Mo
/ sing (me)® sing (nx)*(dz)* = g Omn, (5.13)
0

/Ma sing(mz)* cosy(nz)*(dz)* = 0. (5.14)
0

These orthogonality conditions are direct consequences of (5.7) and (5.8). For
instance they provide the equality

cosq(mz)® cose(nz)* = (1/2) (cose(m + n)*z® + cosq(m — n)*z?),

but since M,, is a multiple period for both cosa(m+n)*z® and cos,(m—n)2z®,
the integral of cos,(mz)® cos, (na)* on the interval [0, M,] will be different from
zero when and only when m = n, in which case one has

Mo s o o __ Ma [ o 1 Ma o (Ma)a
/0 sin? (nz)%(dz)* = /0 cos (nz)*(dz)* = 5 /0 (d)* = 5

Conclusion. The functions 1, cosy 2%, sing 2%, coso(22), sing(22)%,... are or-
thogonal on the interval 0 <z < M, with the unit weight function.

5.3. Fractalization of sin wz and cos wx. All this material can be dupli-
cated step by step to the functions sin,(wz)® and cos,(wz)®, z € R, w € @,
(following standard mathematical practice, we identify the “space domain” R as
distinct from the “frequency domain” @(even though each symbol represents
real numbers) for which the period is X, = M, /w, and mainly we now have the
orthogonality conditions

Xa X o
/ coSo (mwz)® cosy (nwz)® (dz)® = (-——2012—6,””, (5.15)
0
Xa o
/ sing (mwz)® sing (nwz)*(dz)® = Q%')—Jmn, (5.16)
0
Xa
/ sing (mwz)® cosq(nwz)*(dz)* = 0, (5.17)
0
which provide
Xo Xa a
/ sin? (nwz)®(dz)* = / cos? (nwz)*(dz)* = ();) . (5.18)
0 0

Conclusion. The functions 1, cose(wx)®, sing (wx)®, cose(2wz)®, sing (2wz)?,...
are orthogonal on the interval 0 <z < M, /w.
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6. Fourier’s Series of Fractional Order

6.1. Expansion in terms of fractional sine and cosine. Assume that f(z)
is a periodic function with the period X, = M,/w, which is continuous but
nowhere differentiable. All we can claim is that it has a derivative of fractional
order o, 0 < a < 1. In such a case the standard expansion in Fourier’s series
does not work here, since f(z) is not differentiable, and we shall rather look for
a series in the form

o0
flz) = %9 + Z an, €0So (PWz)* + by, sing (nw z)°. (6.1)
n=1
On using by-now classical arguments, we find easily that and are provided by
the expressions

o afw
ap, = 2(—Mw—a) /UM f(z) cos (nwz)®(dz)®, (6.2)

and N
by, = Z(ﬁ;) /0 ) f(z) sing (nwz)*(dz)*. (6.3)

The Parseval-Pythagore theorem now becomes

[ e -] (%—)i (@ +22),

and it holds when and only when
2

M jw N
lim (f - Z(an 08¢ (nw)® + by, sing (nw a:)"‘)) (dz)* = 0.
0

N—oo
n=1

6.2. Expansion via complex-valued Mittag-Leffler function. Main defi-
nition.

Given the definition of the fractional sine and cosine functions (equations
(5.4) and (5.5)), the series (6.1) can be re-written in the equivalent form

f@) = co+ Y [enEa (i(nwz)®) + con o (i(~nw)°®]. (6.4)

n=1
Multiplying both sides by E, (i(—nwz)®, and integrating over [0, X,], we
obtain the equality

Xao Xa
| 1@)Ea (i(-no)®) @ = en |
0 0
Therefore we have (via (4.9))

w

e = (V) / " ) B i(-n2)®] (da)e. (6.5)

Parseval formula
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Assume that another function f (z) can be expanded in the form
fl@) = &+ Z [GnEo (i(nwz)®) + C_pn Eq (i(—nwz)], (6.6)

then one has the Parseval equality

w \& [Malw - 0o
(]\_4{;) /0 f(x)f(z)(dz)* = COEO+;(an—n+C_nEn),

which is obtained by multiplying the series (6.4) and (6.7) together, and then
a-integrating the result on the interval [0, Xq].

7. Function Transformation of Fractional Order

7.1. Fourier’s transform of fractional order.

Definition 7.1. The Fourier’s transform F, {f(z)} of order a (or its o — th
fractional Fourier’s transform) of the function f, R — C, z — f(z), is defined
by the integral

FF(w) = " E, (iw®z®) f(z)(dz)*, 0<a <1, (7.1)

— 0
when the latter converges.

A sufficient condition for convergence is

400
/_ F@)](d2)* < M < o

Assume that f(z) is continuous and piecewise o — th continuously differen-
tiable, that the integral [, Eo {iw®*z®} f(z)(dz)* converges for each w, and that

lim f(z) = 0.

z—+o00

Then, on integrating by parts we have

FAfO@} = —wFalf@)}.
In the same way, the following formulae are easy to be obtained, clearly

Fo{ic®f(z)} = DiFa{f(®)}, (7.2)

Raifes-0} = o (i) F(2). (73)
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7.2. Laplace’s transform of fractional order.

Definition 7.2. Let f(z) denote a function which vanishes for negative values
of the variable z. It’s Laplace’s transform L, {f(z)} of order o(or its a — th
fractional Laplace’s transform) is defined by the expression, when it is finite,

FE(s) = +°°Ea (—s%2%) f(z)(dz)®, 0<a<]l, (7.4)
0

where s € C.
And of course, a sufficient condition for this integral to be finite is that

/ ™ @) () < M < oo
0

Using the properties of the Mittag-Leffler function and the integration by
parts, we find that

Le{f¥@)} = s*La{f(@)}-T(+a)(0). (75)
The following operational formulae can be easily obtained
Lo{z*f(z)} = - DiLa{f(z)},
Lo{f(az)}, = (1/a)*La{f(2)}y/a
La{f(z =0} = Ea(-s"b")La{f(z)},
La{Es(—c*z%) f(z)}, = La{f(2)}y4e-
8. Inversion formula for fractional Fourier’s transform

8.1. An approach via Parseval Theorem. With this definition together
with the properties outlined in the preceding subsection 5.1, we can duplicate
the Fourier’s transform theory, and mainly one has the Parseval equality

| Rem@@w)” = 01)° [ @@ 5.)
from where we can obtain the inversion formula
-+00
fz) = —— / Ea (—iw°2%) fF(@)(dw)®, 0<a<l1,  (82)
(Ma)* J_oo
as follows.
Shortly, let us define the function g(z) as
0, z<0
g(z) = 1, 0<z<z ,
0, >
then, the Parseval equality allows us to write

+oo Eq (—iwezg) — 1

or)” [ " f@)I(de) = D

_iwa (dw)a7

and on equating the derivative d*/dz§ of both sides yields the result.
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8.2. Background on classical inverse Fourier’s transform. The (usual)
Fourier’s transform of a function f(x) is defined by the expression

- +w .
flw) = / e™? f(z)dz, (8.3)
and the corresponding inverse transform is
1 oo —iwz 7
flz) = ) e flw)dw. (8.4)

One way to check this correspondence is to substitute (8.3) into (8.4) to have

i) o= 2 [ fwdy / T e gy, (8.5)

2r —00

But one has the equality

1 [t
e dy = §(z), (8.6)

LN

in such a manner that (8.5) turns to be

) = /R F)8(z — y)dy.

In the following, we shall show how this derivation can be extended to frac-
tional Fourier’s transform, to provide another approach to the equation (8.2).

8.3. Dirac’s delta distribution of fractional order.

Definition 8.1. The Dirac’s distribution, or generalized function, of fractional
order §,(z) is defined by the equality

/R F(@)ba(z)(d2)* = af(0).

Lemma 8.1. Define the function

_ 0, z ¢[0,¢],
nwd = { e 520

then one has the limit
lir% da(z,6) = 6a(x). (8.9)
e~

Proof. One has

/R [@)alz,e)(d)* = o /O (e O (€)6a (6, 0)de

o /0 (& — €)1 F(0)Ba (€, )t

ae(e® 1) f(0)8a(€)
therefore §,(z) = ™. O
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Remark. If instead of (8.7), we had selected the condition

/R F@)a(@)(d)® = ba(a),
then we would find that
Salz,8) = ale7™ (8.10)

8.4. Fractional Dirac’s delta and Mittag-Leffler function. The relation
between Jo(x) and E,(z?) is enlightened by the following result which will be of
basic help later when we shall deal with Fourier’s transform of fractional order.

Lemma 8.2. The following equality holds, which is

+oo
i | BaliCea @) = dua) (8.11)

where M., is the period of the complez-valued Mittag-Leffler function defined by
the equality E, (i (My)*) = 1. .
Proof. We check that (8.11) is consistent with

o = /R By (iw2®) 84 (z)(dz)?,

and to this end, we replace d,(z) in this expression by (8.11) to obtain

a = /]R (dz)® /R Z-A%&Ea(ma (w — u)%) (du)®

= o [ 2 By (i(~vz)®) (dv)®

= [ty [ sEai(-0)) @
dolz)(dz)®

R

it

= o
Remark that one has as well

+00
‘(M%)a [  Baliwa) (@) = ba(o)

8.5. Fourier’s transform inversion theorem.

Proposition 8.2. Given the Fourier’s transform (7.1) that we recall here for
convenience.
+o00
FFw) = Eq (iw®z®) f(z)(dz)*, 0<a<]l, (8.13)
—0C

one has the inversion formula

- 1 oo Sl o\ 7F a
f@) = o /_m B (i (~wn)®) fFW) (), 0<a<l  (8.14)
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Proof. Substltutmg (8.14) into (8.13), we have successively

f@) = / / Eo (i (~w2)®) Ea (i (03)®) f0) (dy)* (d)*,

B W /]R /]R Eq (iw®™ (y — 2)%) f(y)(dy)* (dw)™.

We now refer to (8.7) to obtain the result. a

9. Application to fractional partial differential equation

Background on previous results

As an illustrative example of the kind of results one can so obtain in applying
fractional Fourier’s transform to fractional partial differential equation, let us
consider the equation

Du(z,t) = cDPu(z,t), (9.1)
0 < @, 3 < 1, with the initial condition
u(z,t) = f(z). (9:2)

This equation is a very simple case of diffusion equation [2], and in the frame-
owrk of the modified Riemann-Liouville derivative, its general solution has been
obtained in the form [18]

w(z,t) = o ((B) 2P + c(a))71t). (9.3)
On using the initial condition

o (z/8Y) = f(2), (9-4)

' aN /8
u(z,t) = f((ﬁ!)l/ﬁ (“;[:Jrct—) ) (9.5)

Application of fractional Fourier’s transform
We refer to the fractional Fourier’s transform

one obtains

+o0
Ug(w,t) = / E, (iwP2P) u(z, t)(dz)P, 0<B<1, (9.6)
-0
Taking the Fourier’s transform of the equation (9.1) yields the equation
Djtig(w,t) = e(—iw’)ip(w,1), 9.7)
of which the solution is
Us(w,t) = fa(w)Eq (—icw?t?), (9.8)
therefore
U e 8,8 P FF o
u(z,t) = P ) Eg (—iw’z”) By (—icwt®) f5 () (dw)*.  (9.9)
(Mp)" J—o0
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10. Concluding Remarks

We think it is once more worth to point out that, in our point of view, the
very reason of fractional calculus is to deal with functions which are not differ-
entiable, in such a manner that, any formulation involving derivatives should
be disqualified. In this way of thought, we believe that the so-called Caputo-
Djrbashian derivative [5,7] (which defines fractional derivative of order lower
than the unit by the derivative) is not quite always suitable (or relevant), and
this is the reason why we introduced the modified Riemann-Liouville derivative.

This being the case, this new tool of fractional Fourier’s transform is proposed
for use in applied mathematics, and in this way of thought, it provides a direct
definition for the fractional spectral density, which could be of help, for instance,
to analyze fractal signals [1] with new points of view. A question which comes
in mind is whether one can use Fractional Fourier’s transform to check if a given
signal is of fractal nature. On a general standpoint, one could once more consider
various questions to see whether one can contribute further results.

The range of application of fractional calculus is increasing due to the fact
that, if a particle moves in a space in which the point element has a “thickness”,
coarse-graining space, then its local trajectory is defined by the equation instead
of . So we do expect that fractional Fourier’s transform will be of help to get
more insight in many physical problems [2,6,8,9,10,12,13,24,27, 28,32,37]
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