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MULTIPLE SYMMETRIC POSITIVE SOLUTIONS OF A NEW
KIND STURM-LIOUVILLE-LIKE BOUNDARY VALUE
PROBLEM WITH ONE DIMENSIONAL p-LAPLACIAN

JUNFANG ZHAO* AND WEIGAO GE

ABSTRACT. In this paper, we are concerned with the following four point
boundary value problem with one-dimensional p-Laplacian,

{ (Bp(@' (1)) + RO F & 2(t), 5" (1)) =0, O<t <],
2'(0) - 8z(£) =0, /(1) +dz(n) =0,

where ¢p(s) = [s/P2s, p > 1, 6 >0, 1 > 7> € >0, £+5=1. By
using a fixed point theorem in a cone, we obtain the existence of at least
three symmetric positive solutions. The interesting point is that the bound-
ary condition is a new Sturm-Liouville-like boundary condition, which has
rarely been treated up to now.
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1. Introduction

In this paper, we study the existence of multiple symmetric positive solu-
tions for the following boundary value problem(BVP) with one-dimensional p-
Laplacian

(@p(a' (1)) + h(t)f(t,2(t), 2" ()]) =0, 0<t <1,
2'(0) — 0x(§) =0, /(1) + dz(n) =0,

S

(1.1)

where ¢p(s) = |s|P%s, p> 1, 6§ >0, 1 > 7> ¢ >0, £+n =1 By ¢dy(s) we

denote the inverse to ¢,(s), % -+ ;‘; == 1. Throughout, we agsume h, f satisfy:

(C1) h € L'[0,1] is nonnegative on (0,1), and h(t) # 0 on any subinterval of
(0,1), h(t) = h(1 —t) for t € [0,1].
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(C2) f € C([0,1]x][0, +00)x R, [0, +00)), and f(t,u,v) = f(1—¢t,u,v), (t,u,v)
€ 10,1] x [0, 4+00) x R.

There is much current attention focused on questions of positive solutions of
boundary value problems for ordinary differential equations, see|1,5,12,13] and
the references therein. At the same time, efforts to obtain necessary and sufficient
conditions for the existence of symmetric solutions of BVPs can also be found
in the literature. For a small sample of such work, we refer the readers to the
papers [2,8,9,10]. And in the vast field of the research of differential boundary
value problems, particular attention has been focused on the Sturm-Liouville
BVP

(1.2)

')+ Af(t,z,2') =0, 0<t<1,
az(0) — f’(0) = 0, ~yz(1) +dz'(1) =0,

where «, 3,7,8 > 0, ay+ad + Sy > 0, many results for the existence of positive
solutions of (1.2) have been obtained, see [4,6,7] and the references therein.

Recently, in [11], the authors studied the following Sturm-Liouville-like four-
point boundary value problem

(op(u' () + ft,u(t)) =0, 0<t<1,
u(0) — au/(é) =0, u(l)+ ﬁu/(n) =0,

where o, 3 > 0,1 > n > £ > 0. By giving sufficient conditions, the authors get
the existence of positive solutions.

It is obvious that the boundary condition z'(0) —ax(§) = 0, z/(1)+Bz(n) =0
can also be called Sturm-Liouville-like boundary condition. However, up to now,
there are few works devoted to such kind of four-point BVP. In addition, the
treatments of symmetric cases of such BVPs are not known to the authors as
well, so we intend to fill in such gaps in the literature.

(1.3)

2. Background material and the fixed point theorem

In this section, for convenience, we present the main definitions and theorem
that will be used in this paper.

Definition 2.1. Let E be a real Banach Space. A nonempty closed convex set
P C FE is called a cone if it satisfies the following two conditions:

(1) au € P for all a > 0,
(2) u,—u € P implies u=0.

Every cone P C E induces an ordering in E given by z > y, if and only if
y—x € P.

Definition 2.2. An operator is called completely continuous if it is continuous
and maps bounded sets into pre-compact sets.
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Definition 2.3. The map « is said to be a nonnegative concave(convex) con-
tinuous function provided that a: P — [0, o0} is continuous and

a(Az + (1 — A)y) > Aa(z) + (1 — Na(y)

(a(rz+ (1 - Ny) < da(z) + (1 - Xaly))
forallz,ye Pand 0 <A< 1.

Let o, 7, 8, 1 be nonnegative continuous maps on P with « concave, and
6, v convex. Then for positive numbers a, b, ¢, d we define the following subsets
of P ‘
P(y,d) = {z € P | 1(x) < d},

P(a,v,b,d)= {z € P(v,d) | afzx) > b},
P(a,8,7,b,¢,d) = {z € P(y,d) | a(z) > b, 6(x) < ¢},

R(¢, 7, a,d) = {z € P(y,d) | ¥(z) > a},
then it is obvious that P(y, d), P(a, v, b, d) and P{«,8,7,b, ¢, d) are convex and
R(t, vy, a,d) are closed.
Next we state Avery-Peterson fixed point theorem.

Theorem 2.1. ([3]) Let P be a cone in Banach space E. Let v and 6 be
nonnegative continuous conwex functionals on P, « be nonnegative continuous
concave functional on P, and ¥ be a nonnegative continuous functional on P
satisfying
P(Az) < Mp(z) for all 0 < X <1,
and
alz) <P(x), |zl < M~y(z) for all x € P(vy,d).

with M, d be positive numbers. Suppose thatT : P — P is completely continuous
and there exist positive numbers a, b, ¢, with a < b such that

(A1) {z € P(o,8,7,b,¢,d) | a(z) > b} # 0 and a(Tz) > b for x € P, 0,7,

b, e, d);
{A2) a(Tx) > b for x € Pla,v,b,d) with 6(Tx) > ¢;
(A3) 0 & R{¢p,v,a,d) and ¢(Tz) < a for z € R(¢, v, a,d) with P(z) = a.

Then T has at least three fized points x1, x9, x5 € P(7,d) such that

yw) <d, i=1,2,3; Y(r1) <a; ¥(xzs)>a witha(xs) <b; alxs)>b.

3. Existence of triple symmetric positive solutions

let X = C*0, 1] be endowed with the maximum norm,

T ax a x(t N a3 ’/t .
ol = max { o 1), uax o'}

Cone P C X is defined as
P={z e X|z(t) > 0is concave and symmetric on [0, 1], z'(0) — dz(§) = 0}.
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We define an operator T: P — X,

(Te)(t) =
L0 / h(s) (s, 2(s), 2 ()]s - / ¢, / F(r,a(r), |a’()])drds
/ ¢q/ 7), 2/ (7)])drds, telog)

= / (s) (s, 2(s), 2 (5) ) — / by / ), a ()l drds
+ /t 4, / R f (i, w(r), [2(7)] drds, relp )
Let 2
(T'2)(®)
500 [ * B9 (s, 2(5) 1 (s / "4, / * He (20, 2 s
o[ * b ate) s, 1 [0.1),

(T2)(1) = Lo, / h(s) f(s,(s), |o'(3)])ds / b4 / h(r) (r, (7). | (7)) drds
-l-/ ¢q/1 h(T)f(T,:c(T),[w'(T)])des, te [%,1].

Obviously, (T z)(t) is continuous on t € [0, %], and (T2z)(t) is continuous on

te [%, 1], (Tlx)(%) = (T%)(%), so (Tz)(t) is continuous on ¢ € [0, 1].

Let k& > 2, the nonnegative continuous concave functional «, the nonnegative
continuous convex functional 8, v, and the nonnegative continuous functional
be defined on the cone P by

@) = max [’ (1), () = 0(z) = max Ja(t)],
alz)= min |z(t)|, for z€P.

Lemma 3.2. T: P — P is completely continuous.

Proof. Step 1: We firstly prove that T' : P — P is well defined. (T'x)(t) €
CH0, 1], (Tw)"(t) — —h()f(t,a(t), /() < 0, (T2)(0) - 6(T2)(€) — 0. And it
can be easily seen that (Tz)(t) = (Tz)(1—t). In fact, the assumption (C;) (Cg)
yield that for 0 <t < %,
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(Tz)(t)
1
1 £
= Son [ W20 [ / ) (o), ' () s
ot "zl‘
+/ ¢q/ h(T)f(T,2(7), |z’ (7))drds
o 8

-0 B9 a9 0 s [ o] morsirato
woarast [ o f ihw(m(ﬂ,lw’(r)l)dvds
=50, e s o, [ ra s =)
-
/(1 — 7)[)drds + /1 e / h(1 — 7)f(1 = 7,2(1 — 7), [2/(1 — 7)|)drds
~ o] (5) (5,2, 1o’ ($) ks / 4 . o)t 0, s
/ bq / R(7) f(r,2(7), |2/ (7))drds = (Tz)(1 — ).

With the same argument, we can get that (7z)(t) = (Tx)(1 — t) also holds for
t € [1/2,1]. Noticing 0 < § < %, (Lz)(t) > 0 on t € [0,1] is obvious. Thus
T: P — P is well defined.

Step 2: (T'z)(t) is continuous on z € P. Let x, — =z, as n — 00 in P. Then
there exists a real number r such that sup,cn\ jo lzl| < 7, and according to
(Cy), we have

Sy i=sup{| f(t,z(t), |2 (O))| 0<t <1, 0<az(t) <rlz'(t)] <r} < +oo.

Considering (Cy), as t € [0, 7], we see that

(bq/ h(s)f(s,2(s),]2'(s ds~/ ¢>q/ 7), &' (7)])drds

/ bs / W), 2(r), |2/ (7))drds

< 400,

1

< 0.

g /: h(s)f(s,2(s), 2" (s)])ds

By Lebesgue dominated convergence theorem and the continuity of ¢4, we have
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lim (Tz,)(t)

n—-+4oo

= lim l%q&q/%h(s)f(s,xn( ds-/ ¢q/ ) (7,2 (T),

[z (7)] des+/ ¢q/ TV (T, 2 (7 ),|x;(7')|)d7’ds:|

=L [ i L [ [ i 10,
|z, (7 deS+/ ¢q/ n-lgr—looh VF(T, 20 (1), |2 (7)) d7ds

= (T'x)(t).

i (e @)= i [ H6) 00,2000, 2, 1)

= [t 2005, (51D = X)),

Similarly, when % <t <1, hgl (Tx,)(t) = (Tx)(t), lim (Tz,)'(t) =
n—-+0o0 n

—+oo
(Tz)'(t). So we have T is continuous on x € P.

Step 3: In this step, we aim to prove that 7' maps bounded sets into pre-
compact sets on t € [0,1]. Let € be a bounded set on X, in what following, we
only need to prove that T is a pre-compact set. From step 2 we have known
that for any z € , Tz is bounded and the boundary has nothing to do with 2.
So it remains to prove (Tz)(t) is equi-continuous on €.

For Vz € Q, t1,t2 € [0, 3], we have

/tt Pq / : hr) f(r,2(7), |2'(7)|)dTds

8

[(Tz)(t1) — (T2)(t2)] =

— 0 ast1—>t2.

t2

(Tz) (t1) — (Tz) (t2)] = |@q t h(T)f(r, (), 2’ (7))dr

— 0 as ity — ts.

By the same reasoning, we see that, when ¢1, ¢, € [3,1], |(T2)(t1)—(Tz)(t2)| — 0
as t; — t3. When ¢; € [0, 3],t2 € [3,1], (Tz)(t2) = (Tz)(1 — t2), so when t; —
t2, we have 1 —t3 — #1, thus in this case we also have |(Tz)(t1) — (Tx)(t2)| — 0
as tl — tg.

Combining the above three steps, we have T : P — P is completely continu-
ous. This completes the proof. a
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Lemma 3.3. For any x € P, there exists a real number M > 0 such that

<M
Jnax |z(t)] < M max |2'(4)],

where M = max{1,1/2 +1/6}.

Proof. For any x € P, we have

i 1
1 z / 7 Z !
R A pee 4 < = '/
g2 0 = o) = @)+ [ 0] < | 50) 4 [0
< (4 3) max |2/(0)] < B max [2/(0)
- (2 k) 0%?%1 . = og?éi LA
which gives us the desired result. ]

Lemma 3.4. If x € P, then z(t) > 2min{¢, {1 — )} Jnax |2(t)].

Proof. Firstly, when t € [0, ], we have
1 1/2) —
z(t) > o(5) + M)—ﬁ(—){t —-1/2)= 2t:1:( ) +(1—2t)2(0) > Qm:(
2 1/2 (3.1)
Secondly, when t € (3, 1], we have
x(1/2) —2(1)
>z b St S e Sl R
o) > a(3) + LA e 172
1 . 1
= 2(1 = t)a(5) + (2t — Da(1) 2 2(1 -~ a(3). (3.2)
Combining (3.1) and (3.2), we have z(t) > 2min{t, (1 —t)} Jnax |(t)}, which
completes our proof. o 1

Now, we are ready to apply Avery-Peterson fixed point theorem to the op-
erator T, and will give sufficient conditions for the existence of at least three
syminetric positive solutions to problem (1.1). Let

L:q/)q/§ W(s)ds, M = / ¢q/§ TYdr ds,
0
“Eﬁbq/ Sdb—/ qbq/ h{r)drds +w/ / h{r)drds,

1
= (- —)2 +3 %2

Remark 3.1. It is obvious that D > 1, we will not mention it in what follows.

Theorem 3.5. Assume (Cy) — (Cq) hold, let 0 < a < b < md, suppose further
that f satisfies the following conditions:
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(H1) f(t,u,]v]) < ¢p(d/L) for (¢, u,|v]) € [0,1] x [0, Md] x [0,d];
(Ha) f(t,u,|v]) > ¢y (kb/(2M)), for (t,u, [v]) € [5,1— 3] x [b Db] x [0, d];
(Hs) f(t, u, [v]) < ¢p(a/N), for (t,u,|v]) € [0,1] x { ;al x {0, d].

g2
Where m = min{M, gk—}, then boundary value problem (1.1) has at least three
symmetric positive solutions x1, X2, x3 such that

max lz;(t)] <d, for i=1,2,3;

0<t<
ax lz1 ()] < a; [max lz2()] > a; (3.3)
min zo(t)] < b; min x3(t)| > b.

%ﬁtS(P%)I ) %StS(P%)‘ )

Proof. Problem (1.1) has a solution z = z(t) if and only if it solves the operator
equation x = Tx. Thus we set out to verify the operator T' satisfy Avery-Peterson
fixed point theorem which will prove the existence of at least three fixed points
of T.

Now, we will prove the main theorem step by step.

Step 1: Obviously, ¥(Az) < Mp(z), a(z) < 9(z). Lemma 3.2 yields that
||| € M~(z) for all z € P(y, d). Then assumption (H;) implies that f(t,u, Jv|) <
¢p(d/L). On the other hand, for any x € P, there is Tz € P, thus Tz is concave
and symmetric on [0, 1]. And Jnax [(Tz)(t)| = |(T'z)'(0)|, then we have

=

0<t<1
d
< —-.L=d.
- L
Hence, T : P(v,d) — P(v,d).
Step 2: In order to check that (A;) of theorem 2.1 is satisfied, we choose

z(t)=[—(t— )2+ - kéb Obviously,

WTz) = maX((Tx)())=(Tw)’(0)=¢q/0 h(s)f(s,z(s), |2'(s)])ds

a(z) = - min |z(t)] > b,
l<t<(1-1)
0(z) = [nax lz(t)| = x( )= 2§2b = Db,
kb
(@) = max |2'()] = #'(0) = e =4

Thus, z € P(«,0,7,b,Db,d) and z € {P(a,0,7,b, Db,d)|a(x) > b} #0. If z €
P(a,6,7,b, Db, d), we have b < z(t) < Db, |2'(t)| < d. Hence, from assumption
(H3) and lemma 3.3, it follows that

()

??‘Il\:)

o(Tz) =, gg__)umxt)azzmin{ (L= 20} max [(T2)(0)] -
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2l 7 2 ;
z L {/l QSQ/S M) f(r, z(7), |2'(7))drds

S 2 kb

“k 2M

This shows that condition (A;) of theorem 2.1 is satisfied.
Step 3: In view of lemma 3.3, we see that

2 2 kC
T 0(Tz) = Db = by > b,
( 'L) ‘L) ]i k 262
for all x € P{a,~,b,d) with é’{T.r) > Db.
Step 4: We finally show that (A3) of theorem 2.1 holds. Clearly, ¥(0) = 0 < a,
there holds 0 ¢ R(4,, a,d). Suppose that x € R(1, 7, a,d) with ¢(2) = a. Then,
in view of assumption (Hs), we have

M =0

$(T) = s, [(T2)(0)] = [(T2)3)]

0<t<

:—¢q/ h(s)f(s, 2(s )dsf/ ¢q/ h(r) f(r, 2(7), 2/ (7))drds

/ / V(7 2(7), 2'(7))drds

<1—V—~N:a.

Hence, the condition (As) of theorem 2.1 is also satisfied. Therefore, an applica-

tion of theorem 2.1 implies the boundary value problem (1.1) has at least three

symmetric positive solutions 21, z2, T3 satisfying (3.3). 1
4. Example

In this section, we give an example to illustrate our main result.
Consider the following four point boundary value problem:

Example 4.6.

{ (ds(=")) + f(tz(t), [2'(B)]) = O, (41)

2'(0) — 22(1/4) = 0,2’ (1) + 22(3/4) =

H1 — 1)+ u +14 ] 0<u<l12,
where f(f,u,v) = . 03
11 — \—t > 12.
(1-t)+12°+ w00l U2
Wecan.seethatp::?),h(t):l(5-26-4,17—% let k =4,a =1,b=
10,d =400. Then ¢ = 3, M =1,C= £, D=18,m = 35, L <08 M = 5, N <

0.65.
f(t,u,v) < 2.5 % 10° < ¢3(d/L), for (t,u,v) € [0,1] x [0,400] x [—400, 400};
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f(t,u,v) > 10°% > 5.76 x 10* = ¢3(4b/(2M)),
for (£, u,) € [i Z] « [10,180] x [—400, 400];

flt,u,v) <025+ 1+ 1=2.25< ¢3(a/N),
for (¢t,u,v) € [0,1] x [0, 1] x [—400, 400].
Then the conditions in theorem 2.1 are all satisfied. So BVP (4.1) has at least
three positive solutions x;, z2, x3 such that

Jnax |zi(t)| < 400, for i=1,2,3;

max |z1(t)] <1; 1< max |22(t)] < 180;
0<t<1 0<t<1

min  |z2(t)] < 10; min  |zz(t)] > 10.
F<t<(1—-4) I<i<(1-4)
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