• Title/Summary/Keyword: Link Vibration

Search Result 137, Processing Time 0.024 seconds

Continuous hitting by a flexible link hammer with neural networks generating input pattern

  • Hitaka, Yoshikazu;Izumi, Teruyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.721-724
    • /
    • 1994
  • This paper proposes a continuous hitting by a flexible link hammer. This hammer system is used only the first mode of vibration for a desired hitting. The input of the hammer driver for a continuous hitting is obtained from numerical solutions of two sets of non-linear simultaneous equations which satisfy the hitting conditions. Being too complicated, these numerical calculations are not useful for online processing. Therefore, the multi-layered neural networks are applied to the generation of the input patterns of the hammer driver. The trained network outputs agree well to the numerical solutions.

  • PDF

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

Flexible Robot Manipulator Path Design and Application of Perturbation Adaptive Control to Reduce Residual Vibration (잔류진동 감소를 위한 탄성 로봇 매니퓨레이터 경로설계 및 섭동적응제어의 적용)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A method is presented for generating the path which significantly reduces residual vibration of a flexible robot manipulator and applying control theory to track the desired path. The desired path is optimally designed so that the system completes the required move with minimum residual vibration. A closed loop control theory is applied to track the planned path in the case of load variation. Specifically, it is desired that the optimally designed path has a better trajectory tracking capabilities during the residual vibration over the cycloidal path, in various cases of load. Perturbation adaptive control is used as closed loop control scheme. A planar two link manipulator is used to evaluate this method.

  • PDF

Multidisciplinary Design Optimization of Suspension System for Vibration Reduction of Drum Type Washer (진동저감을 위한 드럼세탁기 현가시스템의 다분야통합최적설계)

  • 이태희;현상학;유홍희;최동훈;전시문;김동원;김영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.429-432
    • /
    • 2004
  • Multidisciplinary design optimization technique is applied to drum type washer in order to minimize the vibration of the cabinet. Dynamic analysis and structural analysis are carried out by using commercial programs to obtain the reliable responses. Analysis models are compared to the experimental responses and finally validated for further design. Two commercial programs are integrated by the design framework EMDIOS that provides interfaces to conveniently link between analyzers and performs design optimization. In this research we could obtain an optimum design that reduces the magnitude of amplitude by about 33% compared with the original design.

  • PDF

A Study on the Development of 6DOF Vibration Simulator for Human Vibration Experiment (인체진동 실험용 6 자유도 가진기 개발에 관한 연구)

  • Woo, Chun-Kyu;Kim, Soo-Hyun;Kwak, Yoon-Keun;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.144-150
    • /
    • 2000
  • In this paper, we introduce a modified six-degrees-of-freedom parallel-link manipulator, which will be applied to the human vibration experiments. We analyze the inverse kinematics and workspace of this manipulator and comprehend the characteristics of kinematics analyzed. Additionally, solutions of forward kinematics are obtained through the iterative Newton-Raphson method known as one of the most used numerical analysis. Finally, dynamic equation of the manipulator is derived in closed form through the Newton-Euler approach, which will be used for the development of control software.

  • PDF

Position and Vibration Control of a Spatial Redundant Flexible Manipulator by using Pseudo-inverse of Jacobian (유사 역행렬을 이용한 여유자유도 3차원 유연 매니퓰레이터의 위치 및 진동제어)

  • Kim, Jin-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.66-72
    • /
    • 2001
  • In this paper, by using pseudo-inverse matrix of the spatial redundant flexible manipulators, a position control method and its effect in vibration suppression was presented. Vibration suppression control was developed using lumped mass spring model of the flexible manipulators. With 2 elastic links and 7 rotory joint manipulator ADAM, (1)position control for no redundancy, and (2)position control for one redundant DOF(degree of freedom) were tested. The objective of this experiment is to show the effect of position control, using pseudo-inverse matrix. toward the improvement of operation, and at the same time, to reduce the vibration of the link and the magnitude of the joint torque.

  • PDF

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

Kineto-Elasto Static and Dynamic Responses of a Fully Elastic Linked, Four-bar Mechanism

  • Sin, Jung-Ho;Kinzel, Gary L.
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.99-109
    • /
    • 1987
  • Mechanisms with fully elastic members must consider both inertial forces due to the rigid motion of mechanisms and due to the elastic vibration of links. The main objectives of the kineto-elasto static and dynamic analyses are to calculate the quasi-static and the time-domain responses, respectively. An iterative transfer matrix method is used for a four-bar, fully elastic linked mechanism. Houbolt direct integration scheme is incorporated for the inertial effects due to the elastic link vibration. The analytical results are compared with the experimental responses and both responses show in good agreement.

  • PDF

A comparative study in input shaping techniques using a flexible manipulator (유연한 조작기를 이용한 입력성형기법의 비교 연구)

  • 심호석;이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1269-1272
    • /
    • 1996
  • Several input shaping techniques are suggested to reduce the vibration of a flexible manipulator. The theories of typical 4 methods(Singer, Tuttle, Feddema, Zuo) are explained and are tested by the experiment of one link flexible manipulator. Zuo's method is the best of all with respect to its robustness.

  • PDF

An experimental study on the human upright standing posture exposed to longitudinal vibration

  • Shin, Young-Kyun;Arif Muhammad;Inooka Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.2-77
    • /
    • 2002
  • Human upright standing posture in the sagittal plane is studied, when it exposed in the antero-posterior vibration. A two link inverted pendulum model is considered and described its functional behavior in terms of ankle and hip joint according to the dominant joints that provides the largest contribution to the corresponding human reactionary motion. The data is analyzed, both in the time domain and the frequency domain. Subjects behave as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion. When vision was allowed, each segment of body shows more stabilized.

  • PDF