• Title/Summary/Keyword: Linear theory

Search Result 2,234, Processing Time 0.027 seconds

ANISOTROPY OF CMBR AND GAUGE INVARIANT COSMIC PERTURBATION THEORIES - SOME AMBIGUITIES AND PROBLEMS

  • XU CHONGMING;WU XUEJUN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.17-18
    • /
    • 1996
  • COBE's results on the anisotropy of the cosmic microwave background radiation (CMBR) is discussed. Some ambiguities in the linear GI cosmic perturbation theory are clarified. The problem of the last scattering surface and the deficiencies of the linear cosmic perturbation theory are mentioned. The possible ways to overcome the theoretical difficulties are discussed also.

  • PDF

CMBR FLUCTUATIONS IN THE BIANCHI TYPE I SPACETIME: THE EFFECTS OF GRAVITATIONAL WAVES (비앙키 I 형 시공간 속의 CMBR 흔들림: 중력파의 영향)

  • Song, D.J.
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In the framework of linear perturbation theory and linear approximation of spacetime anisotropy, we investigated the formulae for the CMBR temperature anisotropy and fluctuation spectrum which have their origin in the primordial tensor perturbations of the perturbed Bianchi type I universe model. The resulting formulae were compared with those of the flat Friedmann model.

A NOTE ON THE DISPERSION RELATION OF THE MODIFIED BOUSSINSQ EQUATIONS

  • Cho, Yong-Sik;Lee, Chang-hoon
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • Optimal values of $\alpha$ characterizing the linear dispersion property in the modified Boussinesq equations are determined by minimizing the combined relative errors of the phase and group velocities. The value of $\alpha$ is fixed in previous studies, whereas it is varying in the present study. The phase and group velocities are calculated by using variable $\alpha$ and compared to those of the linear Stokes wave theory and previous studies. It is found that the present study produces the best match to the linear Stokes theory.

  • PDF

Growth order of Meromorphic Solutions of Higher-order Linear Differential Equations

  • Xu, Junfeng;Zhang, Zhanliang
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.123-132
    • /
    • 2008
  • In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend the result of L. Z. Yang by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the extended Wiman-Valiron theory by Wang and Yi. We also consider the nonhomogeneous linear differential equations.

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Comparison between quasi-linear theory and particle-in-cell simulation of solar wind instabilities

  • Hwang, Junga;Seough, Jungjoon;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2016
  • The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of comparison between the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction. We carried out comparative studies of proton firehose instability, aperiodic ordinary mode instability, and helium ion anisotropy instability. It was found that the agreement between QL theory and PIC simulation is rather good. It means that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime.

  • PDF

Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case (정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우)

  • Yong-Hwan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • In the present paper, an infinite-depth unified theory is applied to the computation of the linear and second-order hydrodynamic forces on slender bodies. No forward speed is assumed, which is valid for some types of ships, like FPSOs and shuttle tankers. Strip theory solution, which is essential for the extension to theory is extended to unified theory, was obtained using NIIRD program developed at MIT. The linear theory is extended to the computation of the second-order mean-drift forces and moment. Furthermore, Aranha's formular is applied to the prediction of wave drift damping coefficients. From this study, it is proved that unified theory provides an accuracy comparable with 3D panel method for the second-order forces as well as the linear solution with much less computational effort.

  • PDF

Teaching Linear Algebra to High School Students

  • Choe, Young-Han
    • Research in Mathematical Education
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.

  • PDF