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Abstract; Optimal values of « characterizing the linear dispersion property in the modified Boussinesq equations are

determined by minimizing the combined relative errors of the phase and group velocities. The value of o is fixed in

previous studies, whereas it is varying in the present study. The phase and group velocities are caleulated by using vari-

able o and compared to those of the linear Stokes wave theory and previous studies. It is found that the present study

produces the best match to the linear Stokes theory.

Key words: Boussinesq equations, dispersion, phase velocity, group velocity

1. INTRODUCTION

Many theoretical studies have been carried
out to extend the applicable range of the gov-
erning equations for water waves propagating
from deep water to shallow water depths. It is
widely known that the conventional Boussinesq
equations give reasonable results in shallow
water, whereas they may not give favorable so-
lutions in deep water. The major limitation of
the conventional Boussinesq equations is the
problem in the model’s applicability to rela-
tively deep water. The search for the governing
equations describing the wave propagation from
a deeper water depth to a shallower water depth
is still an active area of research (Witting, 1984;
Madsen ef al., 1991; Madsen and Sorensen,
1992; Nwogu, 1993; Chen and Liu, 1995). Most
of these studies have tried to improve the linear
dispersion property of the Boussinesq equations.

Madsen er al. (1991) used the conventional
Boussinesq equations in terms of the horizontal
volume flux instead of the depth-averaged ve-
locity. And, they included some correction terms
in the momentum equations so that the resulting
equations yield a linearized dispersion relatton
close to the dispersion relation of the linear
Stokes waves. Nwogu (1993) derived a maodi-
fied form of the conventional Boussinesq equa-
tions in terms of the horizontal velocity on an
arbitrary water level. The linearized dispersion
relation induced from the modified Boussinesq
equations becomes close to that of the linear
Stokes waves if the velocities are chosen near
mid-depth. Nwogu’s derivation of the modified
Boussinesq equations is much more systematic
than Madsen et al’s. Chen and Liu {1995) also
derived the modified Boussinesq equations in
terms of the velocity potential on an arbitrary
elevation. The optimal elevation providing the
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velocity potential is estimated by comparing the
dispersion and shoaling properties of linearized
modified Boussinesq equations with those of the
linear Stokes wave theory.

In this paper, we first test the applicable range
of the modified Boussinesq equations derived
by Nwogu (1993). The role of parameter a de-
termining an optimal elevation where the veloc-
ity potential should be evaluated ts then investi-
gated in detail. In section 2, the phase and group
velocities of the modified Boussinesq equations
are derived. In section 3, Comparisons between
thephase velocity and group velocities of the
modified Boussinesq equations and those of the
linear Stokes waves are made. The optimal
value of parameter ¢ determining the linear
dispersion property is also discussed. Finally,
concluding remarks are drawn in section 4.

2. PHASE AND GROUP VELOCITIES
OF MODIFIED BOUSSINESQ
EQUATIONS

The conventional Boussinesq equations are
widely and frequently used to describe the
weakly nonlinear and weakly dispersive water
waves (Peregrine, 1972). However, there is a
limitation in the applicability of the Boussinesq
equationsto relatively deep water depth.

In this study, Nwogu’s (1993) modified Bous-
sinesq equations are employed to investigate the
characteristics of the phase speed and group
velocity of water wave. Nwogu's modified
Boussinesq equations are written as
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in which £ is the free surface displacement, u 1s
the horizontal velocity vector on an arbitrary
water level 7=z, g is the gravitational accelera-
tion, V is the horizontal gradient operator, and

a is the tuning parameter defined as
z 1z :
a=2%4 _(_{,J (3)

Equations (1) and (2) represent the continuity
and momentum equations, respectively. It
should be noted that the continuity equation of
the conventional Boussinesq equations is an
exact one, whereas equation (1) is no longer
exact.

For horizontally one-dimensional case, the
linearized modified Boussinesq equations over a

constant water depth are expressed as
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To derive the phase and group velocities, the
following forms have been assumed
(Mei, 1989)
$= Aoej(kx'm), = erj(h‘m) (6)
By substituting equation (6) into equations (4)
and (5) and cancelling the exponential factors,
the following relations can be derived
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Equations (7) and (8) are homogeneous for Ag
and Ug. To have a nontrivial solution the deter-
minant of equations (7) and (8) should be van-
ished.

Then, the following phase velocity can be de-
rived

/2
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By taking derivative of the frequency with re-
spect to the wavenumber the group velocity can
also be derived as
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The phase and group velocities of the linear

Stokes wave are given as
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It shoude be noted that the wavenumber k ob-
tained from equation (9) is different from the
wavenumber k, obtained from (11).

3. COMPARISON AND DISCUSSION

In this section, the optimal value of a is esti-
mated by comparing the characteristic properties
of the modified Boussinesq equations with those
of the linear Stokes wave,

Nwogu (1993) estimated an optimal value of
a by minimizing the equared relative error of

the phase velocity for the range of 0 < fyh/r < |
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where &, (=0”/g) is the wavenumber of a deep
water wave. That is, the equared relative error is

defined as
c ¥
/ =(a-1} (13)

The obtained optimal value is 0=-0.3900 corre-
sponding to the water level of z.=-0.53104.
Although no attempt has been made in previ-
ous studies, the squared relative error of the
group velocity is aiso tested in this study. That

h {C_a_l] (19

By minimizing the combined squared relative
errors of the phase and group velocities for the
range of 0 < kyh/mw < 1, Chen and Liun (1995)
obtained a = -0.3855. The value of « = -0.3855
corresponds to the water depth of z.= -0.52154.

2 c 2
13{%—1] +[c_g_l} {15)
i gl

Difterent from previous studies the value of
is no longer a constant in this study. In other
words, the parameter o is varying as water
waves propagate over a varying topography. The
squared relative errors expressed by I}, [; and I3
are employed to calculate and compare optimal
values of  for a wide range of water depths.

Firstly, by minimizing the squared relative
error of the phase velocity expressed as [ the
value of o can be obtained. Secondly, by mini-
mizing the squared relative error of the group
velocity expressed as I the analytical expression
of a can also be obtained. Thirdly, following
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Fig. 2. Ratio of the phase velocity with optimal values of O to that of the linear Stokes wave
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Fig. 3. Ratio of the group velocity with optimal values of (¢ to that of the linear Stokes wave

Chen and Liu (1995) the value of a is deter-
mined by minimizing the sum of squared rela-
tive errors of the phase and group velocities as
given by I;. However, it should be noted again
that a is no longer a constant in this study.

In Fig. 1, optimal values of a obtained from I,
I, and I; are plotted. In very shallow water, o
asymptotically approaches to -0.4000 for all
cases, The discrepancy between values of o ob-
tained from I, and I; or I, and [; increases very

rapidly as kph increases. However, the discrep-
ancy between obtained values by I, and I; is
negligibly small. The optimal value of o in-
creases as a wave propagates to deep water.

The ratios of the phase and group velocities to
the respective velocities of the linear Stokes
wave are calculated and compared in Fig. 2 and
Fig. 3, respectively. As expected, 1, produces no
visible error of the phase velocity. On the other
hand, 1, and I, give errors of the phase velocity
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Fig. 4. Ratios of phase velocities with different values of a to that of the linear Stokes wave
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Fig. 5. Ratios of group velocities with different values of ¢ to that of the linear Stokes wave

with maxima of -3.1% and -2.7 % at kph/n=1,
respectively. The overall difference between the
calculated phase velocity and that of the lingar
Stokes wave is small. Similarly, 1 yields no
visible error of the group velocity. The maxi-
nmum relative error of the group velocity induced
by L, is +8.2 %, whereas that induced by 1; is
only +1.0 %. Therefore, [; gives more agreeable
phase and group velocities than [, and 1.

We calculate and compare the relative errors
of the phase and group velocities for different
values of a=-0.4000 obtained by Witting (1984),
0=-0.3900 obtained by Nwogu (1993), o=
-0.3855 obtained by Chen and Liu (1995), and o
with minimum combined errors of the phase and
group velocities. It is remarked that, if «
=-0.4000 is used, the phase velocity of the linear
modified Boussinesq equations becomes the
[2.2] Pad’e approximation to ghtanh kh/kh,

In Fig. 4, the ratios of the phase velocity to
that of the linear Stokes wave are compared for
different values of a. The present study yields
the best match to the phase velocity in the depth
range of 0 < ki/ 7 = 0,570, while 0=-0.3900
does in the depth range of kyh/ 7 > 0.570 ex-
cept near kyh/ 7=1 where o =-0.3855 produces
better results. The maximum errors of the phase
velocity for o =-0.4000, -0.3900, -0.3855, and
the present study are +2.8 %, +0.7 %, -0.7 %,
and -2.7 %, respectively. It is noted that the
maximum error always occurs at kyf/nr=1 except
o =-0.3855 where it does at kyh/r =0.740.

In Fig. 5, the ratios of the group velocity to
that of the lincar Stokes wave are compared for
different values of a. The present study yields
the group velocity closest to that of the linear
Stokes wave. The maximum errors of the group
velocity are +17.0 %, +10.4 %, +7.1 %, and
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+1.0 % for 0=-0.4000, -0.3900, -0.3855, and the
present study, respectively.

4. CONCLUDING REMARKS

In this study, the optimal values of a charac-
terizing the dispersive property of the modified
Boussinesq equations are determined by mini-
mizing the combined squared relative errors of
the phase and group velocities on the whole
water depth. Different from previous studies the
value of o is not fixed in this study.

It is shown that the optimal values of « pro-
duces the phase and group velocities closer to
those of the linear Stokes wave than previous
studies. The waves in nearshore region is ir-
regular with narrow frequency band. Thus, if an
optimal value of a is chosen for the peak fre-
quency, the phase and group velocities of the
linear Boussinesq equations would be very close
those of the linear Stokes wave even in very
deep water. This implies that the choice of op-
timal values of a determined in this study is
necessary for accurate prediction of real sea

state.
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