• Title/Summary/Keyword: Linear feedback control systems

Search Result 553, Processing Time 0.029 seconds

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

A controller design method based on the Hessenberg form

  • Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1123-1126
    • /
    • 1990
  • A new controller design algorithm based on the Hessenberg form for linear control systems has een proposed. The controller is composed of the dynamic compensator and the state feedback (dynamic state feedback). The algorithm gives a simple way to assign the eigenstructure (eigenvalues and eigenvectors) of the closed loop system and it also provides a method to assign the frequency shapes near the corner frequencies of the closed loop transfer function matrix. Because of this property, the algorithm is called the independent frequency shape control (IFSC) method.

  • PDF

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

An H Output Feedback Control for Uncertain Singularly Perturbed T-S Fuzzy Systems

  • Yoo, Seog-Hwan;Wu, Xue-Dong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.840-847
    • /
    • 2009
  • This paper deals with an $H_{\infty}$ output feedback controller design for uncertain singularly perturbed T-S fuzzy systems. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. It is shown that the $H_{\infty}$ norm of the uncertain singularly perturbed fuzzy system is less than $\gamma$ for a sufficiently small $\varepsilon$ > 0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than $\gamma$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter $\varepsilon$. A numerical example is provided to demonstrate the efficacy of the proposed design method.

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF

A study on the stabilizing control of uncertain system with optimal control (최적제어이론을 이용한 불확실한 시스템의 제어 기법 연구)

  • 한형석;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.55-59
    • /
    • 1991
  • This paper presents a method for designing a full state feedback linear static control law. This will stabilize a given linear uncertain system and also guarantee the performance of the system. The uncertain systems are described by state equation which contains uncertain parameters in system and input distribution matrices. The method is based on the guaranteed cost control of Chang and Peng(1972). The controller gain can be obtained by the solution of a algebraic Riccati equation in which the input weighting matrices depend on the uncertainty bounds. The algebraic Riecati equation in this paper is same as that of weighted LQ regulator problem.

  • PDF

Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-31
    • /
    • 2012
  • This study proposes an active control method to suppress beam-rotating machinery system vibrations. The present control method is a combination of the fuzzy input estimation method (FIEM) and linear quadratic Gaussian problem (LQG) algorithms. The FIEM can estimate the unknown input and optimal states by measuring the dynamic displacement, the optimal estimated states into the feedback control; thereby obtaining the optimal control force for a random linear system. Active vibration control of a beam-rotating machinery system is performed to verify the feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the proposed method can suppress vibrations in a beam-machine system more efficiently than the conventional LQG method.

A New Robust Discrete Static Output Feedback Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.630-635
    • /
    • 2010
  • In this paper, a new discrete static output feedback variable structure controller based on a new dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed dynamic-type sliding surface. The output feedback discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined dynamic-type sliding surface for guaranteeing the designed output in the dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

An Analytical Design of Feedback Regulator and Signal State Estimator in Discrete Linear Systems (이산 선형시스템에서의 피이드백 조정기 및 신호상태 추정기의 해석적 설계)

  • 고명삼
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.19-30
    • /
    • 1972
  • This paper deals with an analytic design of feedback regulator and signal state estimator in discrete linear systems. On the way of developing the deadbeat regulator, some necessary conditions for control policy have been derived, it is proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. We have derived some relations such that the eigenvalue of system plant can be arbitrarily changed by the characteristics of minor loop compensator which is introduced in feedback path. And also we show that the signal state estimator which estimates the state of given signal sequence must satisfy some conditions. Theorems and conclusions are described with some simplel nontrivial numerical examples and signal state tracking application problems.

  • PDF

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF