• 제목/요약/키워드: Linear analysis

검색결과 12,320건 처리시간 0.034초

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

일반적인 재래식 선형 전압 조절기의 최악 조건 해석 (Worst Case Analysis for General Conventional Linear Regulator)

  • 이윤기;권기호;최승운;이상곤
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.162-171
    • /
    • 2009
  • 위성 전자회로의 다양한 전압을 생성하는 선형 전압 조절기는 우주 방사능에 강인한 칩을 사용하기도 하지만, 간단한 선형 전압 조절기 회로를 구현하여 사용하는 경우가 많다. 이때, 설계한 선형 전압 조절기는 공급할 전압에 따라 조금씩 다른 형태로 설계할 수 있지만, 회로 설계에 따른 최악 조건 해석은 일관된 방법론과 체크해야할 항목으로 정리될 수 있다. 본 논문에서는 일반적인 재래식 선형 전압 조절기 회로에서 수행할 최악 조건 해석 방법을 기술하고, 정리한다.

  • PDF

차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계 (Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm)

  • 노석범;황은진;안태천
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.81-86
    • /
    • 2012
  • 본 논문에서는 전형적인 Linear Discriminant Analysis을 확장시켜 전체 입력공간을 다수의 지역공간으로 분할하고 분할된 공간에 Local Linear Discriminant Analysis 기반으로 하여 패턴 분류 규칙을 설계하는 새로운 방법을 제안한다. 전체 입력공간을 여러 개의 지역공간으로 분할하기 위한 방법으로 unsupervised clustering의 대표적인 방법인 k-Means 클러스터링 기법과 최적화 알고리즘인 차분 진화 연산 알고리즘을 사용한다. 제안된 알고리즘의 성능 평가를 위해 기존의 패턴 분류기와 비교 결과를 제시한다.

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

웨이브렛 변환을 이용한 선형시스템 분석: 초음파 신호 해석의 응용 (Linear System Analysis Using Wavelets Transform: Application to Ultrasonic Signal Analysis)

  • 주영복
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.77-83
    • /
    • 2020
  • The Linear system analysis for physical system is very powerful tool for system diagnostic utilizing relationship between the input signal and output signal. This method utilized generally to investigate physical properties of system and the nondestructive test by ultrasonic signals. This method can be explained by linear system theory. In this paper the Continuous Wavelets Transform is utilized to search the relation between the linear system and continuous wavelets transform.

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석 (Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation)

  • 장석명;박지훈;박유섭;김진순;최지환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

리니어 가이드 웨이의 접촉각에 관한 연구 (A Study on Contact angle of the Linear Guide Way)

  • 이선곤;박영기
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.11-16
    • /
    • 2009
  • This research investigates contact angle of Linear Guide Way through a experimental result and theoretical analysis. Since last ten years, most of researchers who concerned with the precision machinery and semiconductor device production etc. so the researches about Linear Guide Way have been unnoticed. The precision machinery and semiconductor device production system has the principle which transfers the mechanical moving to accuracy position control. The Linear Guide Way system has the principle which transfers mechanical moving to accuracy position control is very important to improve performance of the precision machinery and semiconductor device production system. So, In this research, in order to improvement for producing Linear Guide Way, bearing loading analysis and contact angle change through Linear Guide Way theoretical analysis and bearing modeling. Through this study, we may expect that there will be more improvement for producing Linear Guide Way.

비선형 요소가 결합된 선형역학시스템의 해석에의 Fourier 스펙트럼 해석기법의 응용 (An application of fourier spectral analysis to the analysis of linear dynamic systems coupled with nonlinear elements)

  • 성단근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.61-64
    • /
    • 1986
  • The Fourier Spectral Analysis has been widely utilized in the analysis of linear dynamic systems. However, it may not be generaly extended to analyze nonlinear systems. In this paper, a linear underlying dynamic structure coupled with nonlinear elements is analyzed by using newly derived equations of motion after the linear dynamic structure is characterized by the Fourier spectral analysis.

  • PDF

수정된 등가선형 해석 기법의 사례를 통한 검증 (Verification of Modified Equivalent Linear Analysis Through Case Study)

  • 정창균;곽동엽;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF