Browse > Article
http://dx.doi.org/10.12989/scs.2016.20.2.379

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity  

Luo, Kai (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales)
Pi, Yong-Lin (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales)
Gao, Wei (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales)
Bradford, Mark A. (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales)
Publication Information
Steel and Composite Structures / v.20, no.2, 2016 , pp. 379-397 More about this Journal
Abstract
Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.
Keywords
CFST arch; crown-pin; linear; non-linear; stability;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 ACI (1982), Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures, ACI Committee-209, American Concrete Institute (ACI), Detroit, MI, USA.
2 Ahmed, E. and Sobuz, H.R. (2011), "Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load", Struct. Eng. Mech., Int. J., 40(1), 105-120.   DOI
3 Al-Deen, S., Ranzi, G. and Uy, B. (2015), "Non-uniform shrinkage in simply-supported composite steelconcrete slabs", Steel Compos. Struct., Int. J., 18(2), 375-394.   DOI
4 ANSYS (2012), Multiphysics 12.1. Ansys Inc., Canonsburg, PA, USA.
5 AS3600 (2009), Australia Standard: Concrete Structures, Standard Association of Australia, Sydney, Australia.
6 Aslani, F. (2015), "Creep behaviour of normal-and high-strength self-compacting concrete", Struct. Eng. Mech., Int. J., 53(5), 921-938.   DOI
7 Au, F.T.K. and Si, X.T. (2012), "Time-dependent effects on dynamic properties of cable-stayed bridges", Struct. Eng. Mech., Int. J., 41(1), 139-155.   DOI
8 Bazant, Z.P. and Cedolin, L. (2003), Stability of Structure, Dover Publications, Mineola, NY, USA.
9 Bradford, M.A., Pi, Y.L. and Qu, W.L. (2011), "Time-dependent in-plane behaviour and buckling of concrete-filled steel tubular arches", Eng. Struct., 33(5), 1781-1795.   DOI
10 Chung, K.S., Kim, J.H. and Yoo, J.H. (2013), "Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading", Steel Compos. Struct., Int. J., 14(2), 133-153.   DOI
11 Geng, Y., Ranzi, G., Wang, Y.Y. and Zhang, S. (2012), "Time-dependent behaviour of concrete-filled steel tubular columns: analytical and comparative study", Magaz. Concrete Res., 64(1), 55-69.   DOI
12 Gilbert, R.I. and Ranzi, G. (2011), Time-Dependent Behaviour of Concrete Structures, Spon, London, UK.
13 Han, L.H., Yang, Y.F. and Liu, W. (2004), "The behaviour of concrete-filled steel tubular columns with rectangular section under long-term loading", J. Civil Eng., 37(3), 12-18.
14 Han, B., Wang, Y.F., Wang, Q. and Zhang, D.J. (2013), "Creep analysis of CFT columns subjected to eccentric compression loads", Comput. Concrete, Int. J., 11(4), 291-304.   DOI
15 Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100, 211-228.   DOI
16 Ichinose, L.H., Watanabe, E. and Nakai, H. (2001), "An experimental study on creep of concrete filled steel pipes", J. Construct. Steel Res., 57(4), 453-466.   DOI
17 Luo, K., Pi, Y.L., Gao, W. and Bradford, M.A. (2013), "Creep of concrete core and time-dependent nonlinear behaviour and buckling of shallow concrete-filled steel tubular arches", CMES-Comput. Model. Eng. Sci., 95(1), 32-58.
18 Ma, Y.S., Wang, Y.F. and Mao, Z.K. (2011), "Creep effects on dynamic behavior of concrete filled steel tube arch bridge", Struct. Eng. Mech., Int. J., 37(3), 321-330.   DOI
19 Luo, K., Pi, Y.L., Gao, W., Bradford, M.A. and Hui, D. (2015), "Investigation into long-term behaviour and stability of concrete-filled steel tubular arches", J. Construct. Steel Res., 104, 127-136.   DOI
20 Ma, Y.S. and Wang, Y.F. (2013), "Creep effects on the reliability of a concrete-filled steel tube arch bridge", J. Bridge Eng., 18(10), 1095-1104.   DOI
21 Mias, C., Torres, L., Turon, A. and Sharaky, I.A. (2013), "Effect of material properties on long-term deflections of GFRP reinforced concrete beams", Construct. Build. Mater., 41, 99-108.   DOI
22 Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., Int. J., 10(1), 45-67.   DOI
23 Naguib, W. and Mirmiran, A. (2003), "Creep modeling for concrete-filled steel tubes", J. Construct. Steel Res., 59(11), 1327-1344.   DOI
24 Pi, Y.L., Bradford, M.A. and Uy B. (2002), "In-plane stability of arches", Int. J. Solid. Struct., 39, 105-125.   DOI
25 Pi, Y.L., Bradford, M.A. and Qu, W.L. (2011), "Long-term non-linear behaviour and buckling of shallow concrete-filled steel tubular arches", Int. J. Non-linear Mech., 46(9), 1155-1166.   DOI
26 Ranzi, G., Al-Deen, S., Ambrogi, L. and Uy, B. (2013), "Long-term behaviour of simply-supported post-tensioned composite slabs", J. Construct. Steel Res., 88, 172-180.   DOI
27 Schmidt, R. (1979), "Initial postbuckling of three-hinged circular arch", J. Appl. Mech., 46(4), 954-955.   DOI
28 Terrey, P.J., Bradford, M.A. and Gilbert, R.I. (1994), "Creep and shrinkage of concrete in concrete-filled circular steel tubes", Proceeding of 6th International Symposium on Tubular Structures, Melbourne, Australia, December.
29 Shao, X., Peng, J., Li, L., Yan, B. and Hu, J. (2010), "Time-dependent behavior of concrete-filled steel tubular arch bridge", J. Bridge Eng., 15(1), 98-107.   DOI
30 Sundarraja, M.C. and Ganesh Prabhu, G. (2013), "Flexural behaviour of CFST members strengthened using CFRP composites", Steel Compos. Struct., Int. J., 15(6), 623-643.   DOI
31 Uy, B. (2001), "Static long-term effects in short concrete-filled steel box columns under sustained loading", ACI Struct. J., 98(1), 96-104.
32 Wang, T., Bradford, M.A. and Gilbert, R.I. (2005), "Creep buckling of shallow parabolic concrete arches", J. Struct. Eng. ASCE, 132(10), 1641-1649.
33 Wang, Y., Geng, Y. Ranzi, G. and Zhang, S. (2011), "Time-dependent behaviour of expansive concretefilled steel tubular columns", J. Construct. Steel Res., 67(3), 471-483.   DOI