• Title/Summary/Keyword: Linear Structure Model

Search Result 1,186, Processing Time 0.034 seconds

Static or Dynamic Capital Structure Policy Behavior: Empirical Evidence from Indonesia

  • UTAMI, Elok Sri;GUMANTI, Tatang Ary;SUBROTO, Bambang;KHASANAH, Umrotul
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 2021
  • This study investigates the capital structure policy among Indonesian public companies. Previous studies suggest that capital structure policy could follow either static or dynamic behavior. The sample data used in this study was companies in the manufacturing sector, divided into three sub-sectors: the basic and chemical industry, miscellaneous industry, and the consumer goods industry. This study uses panel data from 2010 to 2018, with the Generalized Least Square (GLS) method and compared whether the fixed effect model is better than the common effect model. The results show that the dynamic and non-linear model tests can explain the capital structure determinants than the static and linear models. The dynamic model shows that the capital structure of a certain year is influenced by the capital structure of the previous year. The findings indicate that the company performs some adjustments in its capital structure policy by referring to the previous debt ratio, which implies support to the trade-off theory (TOT). The study also shows that profitability, tangible assets, size, and age explain the variation of capital structure policy. The patterns on the dynamic and non-linear confirm that capital structure runs in a nonlinear pattern, based on the sector, company condition, and the dynamic environment.

Linear Modeling of Viscoelastic Dampers Considering Nonlinear Dynamic Behavior (점탄성 감쇠기의 비선형거동을 고려한 선형모델 해석)

  • Kim, Jin-Koo;Kwon, Young-Jip;Min, Kyung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.171-177
    • /
    • 2002
  • The viscoelastic dampers are considered to be one of the most efficient means of upgrading existing structures against seismic loads. Generally in the dynamic analysis of a structure with added viscoelastic dampers the internal forces of the dampers are represented by constants that are linearly proportional to displacement and velocity. The purpose of this study is to verify the validity of the linear Kelvin model by comparing the results from the linear analysis with those obtained from the more rigorous nonlinear model such as fractional derivative model. According to the results the structural responses of 1-DOF structure obtained using the linear model are very close to those obtained from nonlinear model. However for multi-D0F structure the difference between the results from both models is enlarged as a results of the assumptions associated with the linear modeling of the viscoelastic dampers.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

Comparison of Confidence Intervals on Variance Component In a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong Joon;Park, Sun-Young;Han, Man-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.459-471
    • /
    • 2002
  • In applications using a linear regression model with nested error structure, one might be interested in making inferences concerning variance components. This article proposes approximate confidence intervals on the variance component of the primary level in a simple linear regression model with an unbalanced nested error structure. The intervals are compared using computer simulation and recommendations are provided for selecting an appropriate interval.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

The Analytical Model Considering the Deformation of Panel Zone with Linear Element (선형요소를 사용하여 판넬존 변형을 고려한 해석 모텔)

  • 조소훈;박찬헌;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.293-300
    • /
    • 2004
  • As the structure is taller and its member is larger, the effect of the deformation of Panel zone on the displacement of structure becomes larger. The analysis using the centerline dimensions in the steel moment frame structure can not consider the accurate effect of panel ton And the finite element analysis using infinitesimal solid and shell element is impractical for the total tall building structure. Therefore, this paper proposes the analytical model using linear element in order to be able to evaluate the reasonable deformation of panel zone. the proposed analytical model makes the analysis of the building structure simple and ease because it uses the only linear elements. In addition it can easily incorporate the various parameters affecting the deformation of panel zone. In order to prove the validith of the prosed analytical model, the analysis result using the proposed analytical model is compared with the result using finite element analysis with shell element

  • PDF

Interval Estimation for Sum of Variance Components in a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.361-370
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of valiance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods. The methods are applied to a numerical example and recommendations are given for choosing a proper interval.

Confidence Interval For Sum Of Variance Components In A Simple Linear Regression Model With Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of variance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods.

  • PDF

Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction

  • Tabatabaiefar, Hamid Reza;Fatahi, Behzad;Ghabraie, Kazem;Zhou, Wan-Huan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.27-47
    • /
    • 2015
  • In this study, the accuracy and reliability of fully nonlinear method against equivalent linear method for dynamic analysis of soil-structure interaction is investigated comparing the predicted results of both numerical procedures with the results of experimental shaking table tests. An enhanced numerical soil-structure model has been developed which treats the behaviour of the soil and the structure with equal rigour. The soil-structural model comprises a 15 storey structural model resting on a soft soil inside a laminar soil container. The structural model was analysed under three different conditions: (i) fixed base model performing conventional time history dynamic analysis, (ii) flexible base model (considering full soil-structure interaction) conducting equivalent linear dynamic analysis, and (iii) flexible base model performing fully nonlinear dynamic analysis. The results of the above mentioned three cases in terms of lateral storey deflections and inter-storey drifts are determined and compared with the experimental results of shaking table tests. Comparing the experimental results with the numerical analysis predictions, it is noted that equivalent linear method of dynamic analysis underestimates the inelastic seismic response of mid-rise moment resisting building frames resting on soft soils in comparison to the fully nonlinear dynamic analysis method. Thus, inelastic design procedure, using equivalent linear method, cannot adequately guarantee the structural safety for mid-rise building frames resting on soft soils. However, results obtained from the fully nonlinear method of analysis fit the experimental results reasonably well. Therefore, this method is recommended to be used by practicing engineers.

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.